
ANL�MCS TM ANL ���xx

User�s Guide for MPE� Extensions for MPI Programs

by

William Gropp and Ewing Lusk

A
R

G
O

N
NE

NATIONAL LABORA

TO
R

Y

U
N

IVERSITY OF C
HIC

A
G

O

•

•

MATHEMATICS AND
COMPUTER SCIENCE

DIVISION

Contents

Abstract �

� Introduction �

� The MPE library of useful extensions �

��� Log�le Creation �
��� Log�le Format �
��� Parallel X Graphics �
��� Other MPE Routines �
��� Pro�ling Libraries �

����� Accumulation of Time Spent in MPI routines � � � � � � � � � � � � � �
����� Automatic Logging �
����� Customized Logging �
����� Real�Time Animation �

��	 Log�le Viewers �
��	�� Upshot and Nupshot �
��	�� Jumpshot�� and Jumpshot�� �

��
 Accessing the pro�ling libraries �

��� Automatic generation of pro�ling libraries �
��� Tools for Pro�ling Library Management �

� Using MPE ��
��� Introduction �

��� Directory Structure ��
��� Example Make�le ��
��� Environmental Variables ��
��� Utility Programs ��

����� Log Format Converters ��
����� Log Format Print Programs ��
����� Display Program Selector ��

��	 Using MPE in MPICH ��
��	�� Compilation and Linkage ��
��	�� Inheritance of Environmental Variables � � � � � � � � � � � � � � � � ��
��	�� Viewing Log�les ��

� Debugging MPI programs with built�in tools ��

��� Error handlers ��
��� Contents of the library �les ��

A Installing MPE ��
A�� Con�guration �	

A���� Con�guration Model �	
A���� Build Options and Features �

A�� Installation Instructions ��
A���� Con�guring as part of the MPICH con�gure � � � � � � � � � � � � � � ��
A���� Con�guring as part of an existing MPI implementation � � � � � � � ��

A�� Install�Uninstall Scripts ��

iii

B Installing Java for Jumpshots ��

B�� viewers ��

C Automatic generation of pro�ling libraries ��
C�� Writing wrapper de�nitions ��

D Manual Pages �	

Acknowledgments �

iv

Abstract

The MPE extensions provide a number of useful facilites for MPI programmers�

These include several pro�ling libraries to collect information on MPI programs� in�

cluding log�les for post�mortum visualization and real�time animation� Also included

are routines to provide simple X window system graphics to parallel programs� MPE

may be used with any implemenation of MPI�

� Introduction

The Message Passing Interface �MPI� ��� provides a strong basis for building parallel
programs� One of its design goals was to enable the construction of parallel software
libraries� thus helping to solve the problem of developing large parallel applications� The
MPE �Multi�Processing Environment� library exploits the features of MPI to provide a
number of useful facilities� including performance and correctness debugging� graphics� and
some common utility routines�

The MPE library was developed for the MPICH ��� implementation of MPI �and
is included with the MPICH distribution�� but can and has been used with any MPI
implementation� Installation instructions for MPE are in appendix ���

� The MPE library of useful extensions

Currently the main components of the MPE are

� A set of routines for creating log�les for examination by various graphical visualization
tools � upshot� nupshot� Jumpshot�� or Jumpshot���

� A shared�display parallel X graphics library�

� Routines for sequentializing a section of code being executed in parallel�

� Debugger setup routines�

��� Log�le Creation

MPE provides several ways to generate log�les that describe the progress of a computation�
These log�les can be viewed with one of the graphical tools distributed with MPE� In
addition� you can customize these log�les to add application�speci�c information�

The easiest way to generate log�les is to link your program with a special MPE library
that uses the pro�ling feature of MPI to intercept all MPI calls in an application� To �nd
out how to link with a pro�ling library that produces log �les automatically� see Section ��
�

You can create customized log�les for viewing by calls to the various MPE logging routines�
For details� see the MPE man pages� An example is shown in Section ������

To be added in later editions of this User�s Guide�

�

� All MPE logging routines

� An example log�le

��� Log�le Format

MPE currently provides � di�erent log�le formats� they are ALOG� CLOG and SLOG�
ALOG is provided for backward compatibility purpose and is no longer developed� CLOG
is a simple collections of singly timestamped events and is understood by Jumpshot���
CLOG is the �rst log�le format in MPE to be read by a Java based visualization tool�
SLOG is an abbreviation for Scalable LOG�le format and is based on doubly timestamped
states� The scalability of SLOG comes from separating all states in the log�le into
frames of data� each is small enough to be processed e�ciently by the display program�
Jumpshot��� At the same time� when two adjacent frames are compared sides by sides�
states and arrows will be showed leaving the earlier frame and then entering into later
frame seamlessly� SLOG and Jumpshot�� are capable to handle log�le in the Giga Byte
range� And a simple statistics of state activties is kept by SLOG and displayed by the
Preview window of Jumpshot�� to guide user to locate interesting frame� See document
�mpe�viewers�jumpshot���doc�TourStepByStep�pdf� for more details�

��� Parallel X Graphics

MPE provides a set of routines that allows you to display simple graphics with the X
Window System� In addition� there are routines for input� such as getting a region de�ned
by using the mouse� A sample of the available graphics routines are shown in Table �� For
arguments� see the man pages�

You can �nd an example of the use of the MPE graphics library in the directory
mpich�mpe�contrib�mandel� Enter

make

mpirun �np � pmandel

to see a parallel Mandelbrot calculation algorithm that exploits several features of the MPE

graphics library�

��� Other MPE Routines

Sometimes during the execution of a parallel program� you need to ensure that only a few
�often just one� processor at a time is doing something� The routines MPE�Seq�begin and
MPE�Seq�end allow you to create a �sequential section� in a parallel program�

The MPI standard makes it easy for users to de�ne the routine to be called when an
error is detected by MPI� Often� what you�d like to happen is to have the program start
a debugger so that you can diagnose the problem immediately� In some environments� the
error handler in MPE�Errors�call�dbx�in�xterm allows you to do just that� In addition�

�

Control Routines

MPE Open graphics �collectively� opens an X display
MPE Close graphics Closes a X�� graphics device
MPE Update Updates an X�� display

Output Routines

MPE Draw point Draws a point on an X display
MPE Draw points Draws points on an X display
MPE Draw line Draws a line on an X�� display
MPE Draw circle Draws a circle
MPE Fill rectangle Draws a �lled rectangle on an X�� display
MPE Draw logic Sets logical operation for new pixels
MPE Line thickness Sets thickness of lines
MPE Make color array Makes an array of color indices
MPE Num colors Gets the number of available colors
MPE Add RGB color Add a new color

Input Routines

MPE Get mouse press Get current coordinates of the mouse
MPE Get drag region Get a rectangular region

Table �� MPE graphics routines�

you can compile the MPE library with debugging code included� �See the �mpedbg con�gure
option��

��� Pro�ling Libraries

The MPI pro�ling interface provides a convenient way for you to add performance analysis
tools to any MPI implementation� We demonstrate this mechanism in MPICH� and give
you a running start� by supplying three pro�ling libraries with the MPICH distribution�
MPE users may build and use these libraries with any MPI implementation�

��
�� Accumulation of Time Spent in MPI routines

The �rst pro�ling library is simple� The pro�ling version of each MPI Xxx routine calls
PMPI Wtime �which delivers a time stamp� before and after each call to the corresponding
PMPI Xxx routine� Times are accumulated in each process and written out� one �le per
process� in the pro�ling version of MPI Finalize� The �les are then available for use in
either a global or process�by�process report� This version does not take into account nested
calls� which occur when MPI Bcast� for instance� is implemented in terms of MPI Send and
MPI Recv�

�

��
�� Automatic Logging

The second pro�ling library is called MPE logging libraries which generate log�les� they
are �les of timestamped events for CLOG and timestamped states for SLOG� During
execution� calls to MPE Log event are made to store events of certain types in memory� and
these memory bu�ers are collected and merged in parallel during MPI Finalize� During
execution� MPI Pcontrol can be used to suspend and restart logging operations� �By
default� logging is on� Invoking MPI Pcontrol�	
 turns logging o�� MPI Pcontrol��
 turns
it back on again�� The calls to MPE Log event are made automatically for each MPI call�
You can analyze the log�le produced at the end with a variety of tools� these are described
in Sections ��	�� and ��	���

��
�� Customized Logging

In addition to using the prede�ned MPE logging libraries to log all MPI calls� MPE logging
calls can be inserted into user�s MPI program to de�ne and log states� These states are
called User�De�ned states� States may be nested� allowing one to de�ne a state describing
a user routine that contains several MPI calls� and display both the user�de�ned state and
the MPI operations contained within it� The routine MPE�Log�get�event�number has to
be used to get unique event numbers �this is important if you are writing a library that uses
the MPE logging routines� from the MPE system� The routines MPE�Describe�state and
MPE�Log�event are then used to describe user�de�ned states�

int eventID�begin� eventID�end

���

eventID�begin � MPE�Log�get�event�number�

eventID�end � MPE�Log�get�event�number�

���

MPE�Describe�state� eventID�begin� eventID�end� �Amult�� �bluegreen�

���

MyAmult� Matrix m� Vector v

�

�� Log the start event along with the size of the matrix ��

MPE�Log�event� eventID�begin� m��n� �char �
	

��� Amult code� including MPI calls ���

MPE�Log�event� eventID�end� 	� �char �
	

�

The log�le generated by this code will have the MPI routines within the routine MyAmult
indicated by a containing bluegreen rectangle�

If the MPE logging library� �liblmpe�a�� are NOT linked with the user program�
MPE�Init�log and MPE�Finish�log need to be used before and after all the MPE calls�
Sample programs �cpilog�c� and �fpi�f� are available in MPE source directory
�contrib�test� or the installed directory �share�examples� to illustrate the use of these
MPE routines�

�

��
�� Real�Time Animation

The third library does a simple form of real�time program animation� The MPE graphics
library contains routines that allow a set of processes to share an X display that is not
associated with any one speci�c process� Our prototype uses this capability to draw arrows
that represent message tra�c as the program runs�

��� Log�le Viewers

There are � graphical visualization tools distributed with MPE� they are upshot� nupshot�
Jumpshot�� and Jumpshot��� Out of these � Log�le Viewers� only � viewers are built by
MPE� They are upshot� Jumpshot�� and Jumpshot���

����� Upshot and Nupshot

One tool that we use is called upshot� which is a derivative of Upshot ���� written in Tcl�Tk�
A screen dump of Upshot in use is shown in Figure �� It shows parallel time lines with
process states� like one of the paraGraph ���� The view can be zoomed in or out� horizontally
or vertically� centered on any point in the display chosen with the mouse� In Figure �� the
middle window has resulted from zooming in on the upper window at a chosen point to show
more detail� The window at the bottom of the screen show a histogram of state durations�
with several adjustable parameters�

Nupshot is a version of upshot that is faster but requires an older version of Tcl�Tk�
Because of this limitation� Nupshot is NOT built by default in current MPE�

����� Jumpshot�� and Jumpshot��

There are � versions of Jumpshot distributed with the MPE� They are Jumpshot�� and
Jumpshot��� which have evolved from Upshot and Nupshot� Both are written in Java�
are graphical visualization tools for interpreting binary trace�les which displays them
onto a canvas object� such as the one depicted in Figure �� For Jumpshot��� See ���
for more screenshots and details� For Jumpshot��� See �le
�mpe�viewers�jumpshot���doc�TourStepByStep�pdf� for a brief introduction of the tool�

As the size of the log�le increases� Jumpshot���s performance decreases� and can
ultimately result in Jumpshot�� hanging while it is reading in the log�le� It is hard to
determine at what point Jumpshot�� will hang� but we have seen it with �les as small as
�
MB� When CLOG �le is about �MB in size� the performance of Jumpshot�� starts to
deterioate signi�cantly� There is a current research e�ort that will result in the ability to
make the Java based display program signi�cantly more scalable� The results of the �rst
iteration of this e�ort are SLOG which supports scalable logging of data and Jumpshot��

which reads SLOG�

�

Figure �� A screendump from upshot

Figure �� Jumpshot�� Display

	

��	 Accessing the pro�ling libraries

If the MPE libraries have been built� it is very easy to access the pro�ling libraries� The
con�gure in the MPE directory determines the link path necessary for each pro�ling library
�which varies slightly for each MPI implementation�� These variables are �rst substituted
in the Make�le in the directory �mpe�contrib�test�� The Make�le is then installed into
directory �share�examples� during the �nal installation process� This information is placed
in the following variables�

� PROF LIBS � The compiler �ag needed to link with the mpe library only� The link
path is �lmpe �lpmpich or �lmpe �lpmpi depending on the MPI implementation�

� LOG LIBS � The compiler �ag needed to link with the logging libraries� The logging
libraries log all MPI calls and generate log �le� The link path is �llmpe �PROF LIB�

� TRACE LIBS � The compiler �ag needed to link with the tracing library� The
tracing library will trace all MPI calls� Each MPI call is preceded by a line that
contains the rank in MPI�COMM�WORLD of the calling process� and followed by another
line indicating that the call has completed� Most send and receive routines also
indicate the values of count� tag� and partner �destination for sends� source for
receives�� Output is to standard output� The link path is �ltmpe �PROF LIB�

� ANIM LIBS � The compiler �ag needed to link with the animation library� The
animation library produces a real�time animation of the program� This requires the
MPE graphics� and uses X�� Window System operations� You may need to provide
a speci�c path for the X�� libraries �instead of �lX���� The link path is �lampe

�PROF LIB �lX���

� F�CMPI LIBS � The compiler �ag needed to link Fortran to C MPI wrapper
library with all the above mentioned libraries� For MPICH� this should be �lfmpich�
Otherwise� it could be �lmpe f�cmpi� MPE�s own Fortran to C MPI wrapper library�

� FLIB PATH � The full compiler �ag needed to link Fortran MPI programs with the
logging library�

As part of the make process� small programs �cpi�c� and �fpi�f� are linked with each
pro�ling library� The result of each link test will be written as part of the make output� If
the link test is successful� then these link paths should be used for user programs as well�

If the MPI implementation being used is MPICH� then adding compiler �ag �mpilog to
MPICH�s mpicc�mpif�� will automatically link user program with MPE�s logging libraries
��llmpe �lmpe�� Library link path �lpmpich is also linked with the MPI pro�ling interface
when �mpilog �ag is used

If a Fortran MPI program is linked with MPICH� it is necessary to include the library
��lfmpich� ahead of the pro�ling libraries� This allows C routines to be used for imple�
menting the pro�ling libraries for use by both C and Fortran programs� For example� to
generate log �les in a Fortran program� the library linkage �ag is �lfmpich �llmpe �lmpe

�lpmpich� Using mpif�� �mpilog will automatically link with all these libraries�

If the MPI implementation being used is not MPICH� it is necessary to include the
library ��lmpe f�cmpi� �MPE�s own Fortran to C MPI wrapper library� instead of library
��lfmpich�� Again this has to be linked before any of the pro�ling libraries� So the compiler
linkage �ag will be �lmpe f�cmpi �llmpe �lmpe �lpmpi �lmpi�

It is possible to combine automatic logging with manual logging� Automatic logging will
log all MPI calls and is achieved by linking with �LOG LIBS� Manual logging is achieved by
the user inserting calls to the MPE routines around MPI calls� This way� only the chosen MPI
calls will be logged� However� if a combination of these two types of logging is preferred� then
the user must NOT call MPE Init log and MPE Finish log in the user program� Because
in the linked logging library� MPI Init will call MPE Init log and MPI Finalize will call
MPE Finish log�

��
 Automatic generation of pro�ling libraries

For each of these libraries� the process of building the library was very similar� First�
pro�ling versions of MPI Init and MPI Finalize must be written� The pro�ling versions
of the other MPI routines are similar in style� The code in each looks like

int MPI�Xxx� � � �

�

do something for profiling library

retcode � PMPI�Xxx� � � �

do something else for profiling library

return retcode

�

We generate these routines by writing the �do something� parts only once� in schematic
form� and then wrapping them around the PMPI calls automatically� It is thus easy to
generate pro�ling libraries� See the README �le in mpich�mpe�profiling�wrappergen or
Appendix C�

Examples of how to write wrapper templates are located in the mpe�profiling�lib

subdirectory� There you will �nd the source code �the �w �les� for creating the three
pro�ling libraries described above� An example Makefile for trying these out is located in
the mpe�profiling�examples directory�

��� Tools for Pro�ling Library Management

The sample pro�ling wrappers for MPICH are distributed as wrapper de�nition code� The
wrapper de�nition code is run through the wrappergen utility to generate C code �see
Section ���� Any number of wrapper de�nitions can be used together� so any level of
pro�ling wrapper nesting is possible when using wrappergen�

A few sample wrapper de�nitions are provided with MPICH�

timing Use MPI�Wtime�
 to keep track of the total number of calls to each MPI function�

�

and the time spent within that function� This simply checks the timer before and
after the function call� It does not subtract time spent in calls to other functions�

logging Create log�le of all pt�pt function calls�

vismess Pop up an X window that gives a simple visualization of all messages that are
passed�

allprof All of the above� This shows how several pro�ling libraries may be combined�

Note� These wrappers do not use any mpich�speci�c features besides the MPE graphics
and logging used by �vismess� and �logging�� respectively� They should work on any MPI
implementation�

You can incorporate them manually into your application� which involves three changes
to the building of your application�

� Generate the source code for the desired wrapper�s� with wrappergen� This can be a
one�time task�

� Compile the code for the wrapper�s�� Be sure to supply the needed compile�line
parameters� �vismess� and �logging� require the MPE library ���lmpe��� and the
�vismess� wrapper de�nition requires MPE GRAPHICS�

� Link the compiled wrapper code� the pro�ling version of the mpi library� and any
other necessary libraries ��vismess� requires X� into your application� The required
order is�

��CLINKER
 �application object files���� �

�wrapper object code� �

�other necessary libraries ��lmpe
� �

�profiling mpi library ��lpmpi
� �

�standard mpi library ��lmpi
�

To simplify it� some sample make�le sections have been created in
�mpich�mpe�profiling�lib��

Makefile�timing � timing wrappers

Makefile�logging � logging wrappers

Makefile�vismess � animated messages wrappers

Makefile�allprof � timing� logging� and vismess

To use these Make�le fragments�

�� �optional� Add ��PROF�OBJ
 to your application�s dependency list�

myapp� myapp�o ��PROF�OBJ

�

�� Add ��PROF�FLG
 to your compile line CFLAGS�

CFLAGS � �O ��PROF�FLG

�� Add ��PROF�LIB
 to your link line� after your application�s object code� but before
the main MPI library�

��CLINKER
 myapp�o �L��MPIR�HOME
�lib���ARCH
���COMM
 ��PROF�LIB
 �lmpi

�� �optional� Add ��PROF�CLN
 to your clean target�

rm �f ��o �� myapp ��PROF�CLN

�� Include the desired Make�le fragment in your make�le�

include ��MPIR�HOME
�mpe�profiling�lib�Makefile�logging

�or

�include ��MPIR�HOME
�mpe�profiling�lib�Makefile�logging

if you are using the wildly incompatible BSD ����derived make�

� Using MPE

��� Introduction

The Multi�Processing Environment �MPE� attempts to provide programmers with a com�
plete suite of performance analysis tools for their MPI programs based on post processing
approach� These tools include a set of pro�ling libraries� a set of utility programs� and a
set of graphical tools�

The �rst set of tools to be used with user MPI programs is pro�ling libraries which
provide a collection of routines that create log �les� These log �les can be created manually
by inserting MPE calls in the MPI program� or automatically by linking with the appropriate
MPE libraries� or by combining the above two methods�see section�������� Currently� the
MPE o�ers the following � pro�ling libraries�

� Tracing Library � This library traces all MPI calls� Each MPI call is preceded by a
line that contains the rank in MPI�COMM�WORLD of the calling process� and followed by
another line indicating that the call has completed� Most send and receive routines
also indicate the values of count� tag� and partner �destination for sends� source for
receives�� Output is to standard output�

� Animation Libraries � A simple form of real�time program animation that requires
X window routines�

�

� Logging Libraries � The most useful and widely used pro�ling libraries in MPE�
They form the basis to generate log �les from user MPI programs� There are currently
� di�erent log �le formats allowed in MPE� The default log �le format is CLOG� It
is basically a collection of events with single timestamps� And there is ALOG which
is provided for backward compatibility reason and it is not being developed� And
the most powerful one is SLOG� stands for Scalable LOG�le format� which can be
converted from CLOG �le after CLOG �le has been generated �preferred approach��
or can be generated directly when MPI program is executed �through setting the
environmental variable MPE LOG FORMAT to SLOG��

The set of utility programs in MPE includes log format converter �e�g� clog�slog��
log�le print �e�g� slog print� and log�le viewer wrapper� logviewer� which selects the
correct graphical tool to display the log�le based on the log�le�s �le extension�

Currently� MPE�s graphical tools includes � display programs� upshot for ALOG�
Jumpshot�� for CLOG and Jumpshot�� for SLOG� The logviewer script eliminates the
need for user to remember the relationship between log�le formats and display programs�

��� Directory Structure

The �nal install directory contains the following subdirectories� In terms of usage of MPE�
user usually only need to know about the �les that have been installed in �include��� �lib��
and �bin���

include� contains all the include �les that user program needs to read�

lib� contains all the libraries that user program needs to link with�

bin� contains all the utility programs that user needs to use�

sbin� contains the MPE uninstall script to uninstall the installation�

share� contains user read�only data� Besides �share�examples��� user usually does NOT
need to know the details of other subdirectories�

��� Example Make�le

�share�examples� contains some very useful and simple example programs and �Makefile�
which illustrates the usage of MPE routines and the linkage of MPE libraries to generate
log�les� In most cases� users can simply copy the �share�examples�Makefile� to their
home directory� and do a make to compile the suggested targets� Users don�t need to copy
the ��c� and ��f� �les when MPE has been compiled with a make that has VPATH support�
The created executables can be launched with mpirun provided by the MPI implementation
to generate sample log�les�

��

��� Environmental Variables

There are � environmental variables� TMPDIR and MPE LOG FORMAT� that user may
need to set before the generation of log�les �

MPE LOG FORMAT � determines the format of the log�le generated from the ex�
ecution of application linked with MPE logging libraries� The allowed value for
MPE LOG FORMAT are CLOG� SLOG and ALOG� When MPE LOG FORMAT
is NOT set� CLOG is assumed�

TMPDIR � speci�es a directory to be used as temporary storage for each process� By
default� when TMPDIR is NOT set� ��tmp� will be used� When user needs to generate
a very large log�le for long�running MPI job� user needs to make sure that TMPDIR
is big enough to hold the temporary log�le which will be deleted if the merged log�le
can be created successfully� In order to minimize the overhead of the logging to the
MPI program� it is highly recommended user to use a �local� �le system for TMPDIR�

Note � The �nal merged log�le will be written back to the �le system where process

 is�

��� Utility Programs

In �bin��� user can �nd several useful utility programs when manipulating log�les� These
includes log format converters� e�g� clog�slog� log format print programs� e�g� slog print�
and a script to launch display program� logviewer�

��
�� Log Format Converters

clog�slog � a CLOG to SLOG log�le converter� Since the automatic generation of SLOG
�le through setting of environmental variable MPE LOG FORMAT to SLOG may
NOT work for some non well�behaved MPI programs� using the log�le format converter
can generate extra diagnostic information about the condition of the log�le� Also the
converter allows one to adjust certain parameters of the log�le� like frame size which is
the segment of the log�le to be displayed by Jumpshot���s Time Line window� For non
well behaved MPI program� one may need to increase the frame size from the default
	�KB to a bigger value� For more information about the converter� do clog�slog �h�

clog�alog � a CLOG to ALOG log�le converter� It is not being developed� It is provided
here for backward compatibility purpose�

��
�� Log Format Print Programs

slog print � a stdout print program for SLOG �le� It serves to check the content of the
log�le� If the SLOG �le is too big� it may NOT be useful to use slog print� Also�
when slog is NOT complete� slog print won�t work� So it serves as a simple test to
check if the SLOG �le is generated completely�

clog print � a stdout print program for CLOG �le�

��

��
�� Display Program Selector

logviewer � the script which involves appropriate viewer based on the �le extension of
log�le� For instance� if the log�le is foo�slog� logviewer will invoke Jumpshot��

to display the log�le� Jumpshot�� resides in �share��� For more information of
logviewer� do logviewer �help to list all available options�

��� Using MPE in MPICH

MPE has been seamlessly integrated into MPICH distribution� so user may �nd it easier to
use MPE when using it with MPICH� Here are the di�erences of using MPE with MPICH
and with other MPI implementations�

����� Compilation and Linkage

MPICH provides scripts to help users to compile and link C�C�� and F

�F�
 programs�
They are mpicc for C programs� mpiCC for C�� programs� mpif�� for F

 and mpif�	 for
F�
 programs� In addition� these � scripts allows special options to be used to link with
MPE pro�ling libraries� These options are �

�mpitrace � to compile and link with tracing library�

�mpianim � to compile and link with animation libraries�

�mpilog � to compile and link with logging libraries�

For instance� the following command creates executable� fpilog� which generates log�le
when it is executed�

mpif�� �mpilog �o fpilog fpilog�f

For other MPI implementations� user needs to compile and link their application with
MPE pro�ling libraries explicitly as shown in the example make�le�

����� Inheritance of Environmental Variables

MPE relies on certain environmental variables �e�g� TMPDIR�� These variables determine
how MPE behaves� It is important to make sure that all the MPI processes receive the
intended value of environmental variables� The complication of this issue comes from the
fact that MPICH contains many di�erent devices for di�erent platforms� some of these
devices have a di�erent way of passing of environmental variables to other processes� The
often used devices� like ch p� and ch shmem� do not require special attention to pass the
value of the environmental variable to spawned processes� The spawned process inherits
the value from the launching process as long as the environmental variable in the launching
process is set� But this is NOT true for all the devices� for instance� the ch p�mpd device

��

may require a special option of mpirun to be used to set the environmental variables to all
processes�

mpirun �np N cpilog �MPDENV� MPE�LOG�FORMAT�SLOG

In this example� the option �MPDENV� is needed to make sure that all processes have
their environmental variable� MPE LOG FORMAT� set to SLOG�

For other MPI implementations� how environmental variables are passed remains un�
changed� User needs to get familar with the environment and set the environmental variables
accordingly�

����� Viewing Log�les

MPE�s install directory structure is the same as MPICH�s� So all MPE�s utility programs
will be located in MPICH�s �bin�� directory� To view a log�le� say �fpilog�slog�� do

logviewer fpilog�slog

The command will select and invoke Jumpshot�� to display the content of SLOG �le if
Jumpshot�� has been built and installed successfully�

� Debugging MPI programs with built�in tools

Debugging of parallel programs is notoriously di�cult� and we do not have a magical solution
to this problem� Nonetheless� we have built into MPICH a few features that may be of use
in debugging MPI programs�

��� Error handlers

The MPI Standard speci�es a mechanism for installing one�s own error handler� and speci�es
the behavior of two prede�ned ones� MPI�ERRORS�RETURN and MPI�ERRORS�ARE�FATAL� As
part of the MPE library� we include two other error handlers to facilitate the use of dbx in
debugging MPI programs�

MPE�Errors�call�dbx�in�xterm

MPE�Signals�call�debugger

These error handlers are located in the MPE directory� A con�gure option ��mpedbg� includes
these error handlers into the regular MPI libraries� and allows the command�line argument
�mpedbg to make MPE�Errors�call�dbx�in�xterm the default error handler �instead of
MPI�ERRORS�ARE�FATAL��

��

��� Contents of the library �les

The directory containing the MPI library �le ��libmpich�a�� contains a few additional �les�
These are summarized here

libmpe�a contains MPE graphics� logging� and other extensions �PMPE�Xxxx�

libmpe nompi�a contains MPE graphics without MPI

libampe�a contains MPE Animation interface

liblmpe�a contains MPE Logging interface

libtmpe�a contains MPE Tracing interface

libmpe f�cmpi�a contains MPE Fortran to C MPI wrapper interface

mpe prof�o Sample pro�ling library �C�

��

Appendices

A Installing MPE

A�� Con�guration

MPE can be con�gured and installed as an extension to most MPI standard compliant MPI
implementations� e�g� MPICH� LAM� SGI�s MPI� HP�UX�s MPI and IBM�s MPI� It has
been integrated seamlessly into MPICH distribution� so MPE will be installed automatically
during MPICH�s installation process�

A���� Con�guration Model

MPE is designed to be used as an extension to an existing MPI implementation� so its
con�guration model assumes a general MPI development environment� Here are the some
of the variables that MPE con�gure reads� some are read as environmental variables and
some are read from the command line arguments to con�gure�

CC � C compiler used to create serial executable�

e�g� xlc for IBM MPI�

MPI�CC � C compiler used to compile MPI program and to create parallel

executable�

e�g� mpcc for IBM MPI� or mpicc for MPICH�

MPE�CFLAGS � CFLAGS for CC and MPI�CC�

F�� � F�� compiler used to create serial executable�

e�g� xlf for IBM MPI�

MPI�F�� � F�� compiler used to compile MPI program and to create parallel

executable�

e�g� mpxlf for IBM MPI� or mpif�� for MPICH�

MPE�FFLAGS � FFLAGS for F�� and MPI�F���

MPI�INC � compiler�s include flag �with prefix ��I�
 for MPI�CC�MPI�F���

e�g� ��I�usr�include� for mpi�h on IRIX���

MPI�LIBS � compiler�s library flag �with prefix ��L� for library path and

prefix ��l� for each library name
 needed by MPI�CC�MPI�F���

e�g� ��L�usr�lib �lmpi� for libmpi�a on IRIX���

F�CMPI�LIBS � compiler�s library flag for Fortran to C MPI wrapper library�

e�g� ��lfmpich� when MPI�CC�mpicc � MPI�F���mpif�� for MPICH�

Among above listed variables� CC� MPI CC� F

 and MPI F

 are usually set by
the corresponding environmental variables� The rest can be set through command line
arguments to con�gure� In some MPI implementations� like HP�UX�s� MPI CC and
MPI F

 are reserved for use by the MPI implementation� use the con�gure options to
set MPI CC and MPI F

 instead�

�	

A���� Build Options and Features

MPE�s con�gure is written using autoconf �� and supports VPATH style install process� It
means the actual source directory and the building directory can be in � di�erent locations�
This allows the same source directory to be used to build multiple versions of MPE with
di�erent options and still won�t mess up the original source� It is highly recommended that
user should do a VPATH build� Also MPE involves several di�erent independent packages�
in order to create a tightly integrated environment for user� it is recommended that user
should do a make install to install the MPE in a separate directory after the build is
done� The bene�t is that all utility programs will be in �bin��� all libraries will be in �lib��
and all graphic tools will be nicely organized in �share�� ���

There are � types of con�gure options�

�
 MPI implementation and User options

�
 Generic configure flags supplied by autoconf �

For a list of �ags�switches for type � �not type �� in MPE� use the script
configure��help�

The following is not a complete list but some of the more important ones� Generic �ags�

��prefix�INSTALL�DIR Specifies the final install directory for

�make install�� All libraries� utility

programs� graphic programs and examples

are installed in a standard directory

structure without files created in the

building process�

��x�includes�X�INC Specifies the directory where X include

files are located� This is used when

configure has trouble in locating X in

user system�

��x�libraries�X�LIBS Specifies the directory where X libraries

are located� This is used when configure

has trouble in locating X in user system�

MPI implementation Options�

��with�mpicc�MPI�CC Specify MPI C compiler to generate parallel

executable� e�g� mpcc for AIX�

��with�mpif���MPI�F�� Specify MPI F�� compiler to generate parallel

executable� e�g� mpxlf for AIX�

��with�cflags�MPE�CFLAGS Specify extra CFLAGS to the C and MPI�CC

compilers� e�g� ����� for IRIX�� C compiler

�

��with�fflags�MPE�FFLAGS Specify extra FFLAGS to the F�� and MPI�F��

compilers� e�g� ����� for IRIX�� F�� compiler

��with�mpiinc�MPI�INC Specify compiler�s include flag for MPI

include directory�

e�g� ��I�pkgs�MPI�include� for mpi�h

��with�mpilibs�MPI�LIBS Specify compiler�s library flag for MPI

libraries�

e�g� ��L�pkgs�MPI�lib �lpmpich �lmpich�

��enable�f�� Enable the compilation of routines that

require a Fortran compiler� If configuring

with MPICH� the configure in the top�level

MPICH directory will choose the appropriate

value for you� However� it can be overridden�

The default is yes� ��enable�f���

��enable�f�cmpilib Enable the building of MPE�s internal Fortran

to C MPI wrapper library� The default is yes�

��enable�f�cmpilib

��with�f�cmpilibs�F�CMPI�LIBS Specify compiler�s library flags for Fortran

to C MPI wrapper library� Using this option

will force ��disable�f�cmpilib�

e�g� ��lfmpich� when configuring MPE for MPICH

Other User Options�

��enable�echo Turn on strong echoing� The default is no�

��disable�echo�

��with�mpelibname�MPE�LIBNAME Specify the MPE library name instead of the

default �mpe�� e�g� if MPE�LIBNAME��MPE��

then the libraries generated will be libMPE�a�

liblMPE�a� libtMPE�a� libaMPE�a and

libMPE�f�cmpi�a� This option is necessary

when configuring MPE for a existing and older

version of MPICH which has MPE installed�

��enable�mpe�graphics Enable the building of MPE graphics routines�

If disabled� then the MPE routines that make

use of X�� graphics will not be built� This

is appropriate for systems that either do not

have the X�� include files or that do not

support X�� graphics� The default is

enable�yes�

��

��enable�viewers Enable the build of all the available log

viewers� The default is enable�yes

��with�java�JAVA�HOME Specify the path of the top�level directory

of the Java� JDK� installation� If this

option is not given� configure will try to

locate JDK for you to build Jumpshot�� and

Jumpshot��� JDK ����� to JDK ����� can be

used to build both Jumpshots�

��with�wishloc�WISHLOC This switch specifies the name of Tcl�Tk wish

executable� If this switch is omitted�

configure will attempt to locate a version�

This is used only for upshot�

Note� Because Tcl and Tk keep changing in

incompatible ways� we will soon be dropping

support for any tool that uses Tcl�Tk�

A�� Installation Instructions

As noted earlier� the MPE library can be installed as part of the MPICH con�gure or as
an extension of an existing MPI implementation� Below are instructions and examples for
typical installation of MPE on popular MPI implementations�

A���� Con�guring as part of the MPICH con�gure

The con�gure in the MPICH directory will try to determine the necessary information and
pass it to the MPE con�gure� If no options are given� the MPE will automatically be
con�gured by default� However� the user can provide extra con�guration information to
MPE through MPICH con�gure with the following options�

�mpe�opts�MPE�OPTS

where MPE OPTS is one or more of the choices in section A����� Multiple instances of
�mpe opts are allowed in MPICH con�gure to specify di�erent options for the MPE� The
following is a con�gure option which speci�es a non�default location of JDK installation�

�mpe�opts���with�java��sandbox�chan�java������

A���� Con�guring as part of an existing MPI implementation

The following are some examples for con�guring MPE for an existing MPI implementation�

� For SGI MPI� e�g� denali�mcs�anl�gov� do the following for default ABI� �n��

��

setenv MAKE gmake

��MPE�SRC�DIR��configure ��with�mpilibs��lmpi �

��with�java��usr�java�������usr�java

make

make install PREFIX���MPE�INSTALL�DIR�

for 	� bits ABI� add options with�c�ags!�	� and with�"ags!�	� to the con�gure
options�

� For IBM MPI� e�g� quad�mcs�anl�gov� do

setenv MPI�CC mpcc

setenv MPI�F�� mpxlf

��MPE�SRC�DIR��configure ��with�java��homes�chan�pkgs�java�J�����

make

make install PREFIX���MPE�INSTALL�DIR�

� For HP�UX�s MPI� do

��MPE�SRC�DIR��configure ��with�mpicc�mpicc �

��with�mpif���mpif�� �

��with�flib�path�leader���Wl��L�

make

make install PREFIX���MPE�INSTALL�DIR�

MPE�s Fortran support on HP�UX�s MPI is NOT working yet� So to get MPI Fortran
code to generate log�le� you could use HP�UX�s libfmpi�a if it is there� Here is the
con�gure options�

��MPE�SRC�DIR��configure ��with�mpicc�mpicc �

��with�mpif���mpif�� �

��with�flib�path�leader���Wl��L� �

��with�f�cmpilibs��lfmpi

make

make install PREFIX���MPE�INSTALL�DIR�

� For existing MPICH� like prebuilt version of MPICH������ or MPICH�����
� e�g�
donner� do

setenv MPI�CC ��MPICH�INSTALL�DIR��mpicc

setenv MPI�F�� ��MPICH�INSTALL�DIR��mpif��

��MPE�SRC�DIR��configure ��with�f�cmpilibs��lfmpich �

��with�mpelibname�newMPE �

��with�java��sandbox�jdk����v�

make

make install PREFIX���MPE�INSTALL�DIR�

�

It is important to use the con�gure option with�mpelibname to specify a di�erent
MPE library name than the default �mpe� when con�guring MPE for older MPICH�
Without this option� the linkage tests in MPE would most likely use the old MPE
libraries in the MPICH instead of the newly built MPE libraries in resolving the MPE
symbols� Also the option with�f�cmpilibs forces MPE to use the Fortran to C MPI
wrapper library in previous version of MPICH�

� For LAM� do

setenv MPI�CC ��LAM�INSTALL�DIR��bin�hcc

setenv MPI�f�� ��LAM�INSTALL�DIR��bin�hf��

��MPE�SRC�DIR��configure ��with�mpilibs���L��LAM�INSTALL�DIR��lib �lpmpi� �

��with�java��sandbox�jdk����v�

make

make install PREFIX���MPE�INSTALL�DIR�

Using MPE with LAM for fortran MPI program is not working until recently� i�e�
MPE in MPICH������ or later� Con�gure options listed above enable MPE�s internal
Fortran to C MPI library� � To use LAM�s Fortran to C MPI library in LAM 	����
or later� liblamf

mpi�a� do

setenv MPI�CC ��LAM�INSTALL�DIR��bin�hcc

setenv MPI�f�� ��LAM�INSTALL�DIR��bin�hf��

��MPE�SRC�DIR��configure ��with�mpilibs���L��LAM�INSTALL�DIR��lib �lpmpi� �

��with�f�cmpilibs��llamf��mpi �

��with�java��sandbox�jdk����v�

make

make install PREFIX���MPE�INSTALL�DIR�

A�� Install�Uninstall Scripts

A mpeinstall script is created during con�guration� If con�guring with MPICH� then
the mpiinstall script will invoke the mpeinstall script� However� mpeinstall can also
be used by itself� This is only optional and is of use only if you wish to install the MPE
library in a public place so that others may use it� Final install directory will consist of
an �include�� �lib�� �bin�� �sbin� and �share� subdirectories� Examples and various log�le
viewers will be installed under �share�� The �sbin� in installed directory contains an MPE
uninstall script mpeuninstall�

B Installing Java for Jumpshots

B�� viewers

MPE includes a �viewers� subdirectory� which is an independent package� includes � versions
of Jumpshots� Jumpshot�� and Jumpshot��� Both needs to be built with Java Development

�if you have MPE in MPICH������� you need to download a patch from MPICH�s web server to �x MPE
before building MPE with LAM� The URL is http�		www�unix�mcs�anl�gov	mpi	mpich	buglist�tbl�html

��

Kit �JDK�� i�e� Java distribution that includes a Java compiler� javac� Theoretically�
Jumpshots can be distributed with precompiled byte code instead of source code that needs
to be compiled� The main reason is that there exists JDK which isn�t compatible with
Swing and one of the easiest ways to detect this problem is to compile and link the code to
see if things are �ne� We are still planning to distribute byte code in later version�

Jumpshot�� and Jumpshot�� are both developed based on Sun�s JDK� Jumpshot�� is
developed based on JDK�����Swing���
��� So it can only be built with JDK����� not JDK�
��� or later� On the other hand� Jumpshot�� is developed based on JDK�����Swing������� It
can be built by both JDK���� and JDK����� So it is recommended that user should use the
latest JDK����� i�e� JDK������� to build both Jumpshots when con�guring MPE or MPICH�
If one would like to use di�erent version of JDK to build each Jumpshot� one needs to build
these two tools separately�

We will list the status of the JDK distributions on some of the popular UNIX platforms
that we have tested and what is needed to build the JDK properly for Jumpshots� The
URLs provided below are updated on
������

�

� Linux�i�
�� Linux running on intel x�	 processor has many choices of JDKs�
Blackdown�org has released many di�erent versions of JDK for Linux on this platform�
including both JDK���� and JDK����� You can download them by locating the closest
FTP site at �http���www�blackdown�org�� one of the popular download sites in US
is �ftp���metalab�unc�edu�pub�linux�devel�lang�java�blackdown�org��� Pick
the JDK distribution that has the correct �libc� for your platform�

Sun also distributes a JDK���� for linux� Here is the URL for download�
�http���www�javasoft�com�products�jdk�����download�linux�html��

As soon as the package is unpacked� it should be ready to compile Jumpshots�

� Linux�alpha� Linux running on alpha processor has limited choice of JDK� The
only versions that have been tested to be able to compile Jumpshots is JDK������
from alphalinux�org� Here are the URL�

�ftp���ftp�alphalinux�org�pub�java�java�����r��jdk��� RH�	 alpha bin ����� v��tgz�

or

�ftp���ftp�alphalinux�org�pub�java�java�����r��jdk��� RH�	 alpha bin ����� v��tgz�

Since the distribution does NOT come with classes �le� User needs to download the
classes �le separately� The URL is

�ftp���ftp�alphalinux�org�pub�java�java�����r��jdk��� alpha classes v��tgz�

Since Jumpshots need �le �classes�zip�� so after unzipped the �le� be sure to do the
following to generate the �classes�zip��

cd jdk����classes

zip �	 ���lib�classes�zip �

As opposed to JDK for linux� �libawt�so� is dynamical linked instead of statically
linked� So when running Jumpshot� it will complain missing of �libXm�so� if your
system doesn�t have Motif installed� We installed Lesstif which seems to resolve the
issue�

��

Bugs� The �nesting� of states in Jumpshot�� are NOT working in this setup�

� Solaris� We have tested JDKs as old as JDK�����	 on Solaris box� e�g� So�
laris JDK ����	
�� �

� IRIX��� We have tested JDK�����	� JDK�����
 and JDK������ from SGI� they all
seem to work �ne with Jumpshots� JDK������ seems to work best with Jumpshots on
IRIX� You can download them at

�http���www�sgi�com�developers�devtools�languages�java�html��

� AIX� Only JDK������ for AIX have been tested with Jumpshots� You can download
them at

�http���www�ibm�com�java�jdk�aix�index�html�

� HP�UX� HP distributes JDK for its HP�UX OS� None of JDK for HP�UX has been
tested with Jumpshots because of lack of access to the platform� Here is the URL for
HP�s JDK�

�http���www�unixsolutions�hp�com�products�java�index�html�

C Automatic generation of pro�ling libraries

The pro�ling wrapper generator �wrappergen� has been designed to complement the MPI
pro�ling interface� It allows the user to write any number of �meta� wrappers which can be
applied to any number of MPI functions� Wrappers can be in separate �les� and can nest
properly� so that more than one layer of pro�ling may exist on indiividual functions�

Wrappergen needs three sources of input�

�� A list of functions for which to generate wrappers�

�� Declarations for the functions that are to be pro�led� For speed and parsing simplicity�
a special format has been used� See the �le �proto��

�� Wrapper de�nitions�

The list of functions is simply a �le of whitespace�separated function names� If omitted�
any forallfn or fnall macros will expand for every function in the declaration �le�

C�� Writing wrapper de�nitions

Wrapper de�nitions themselves consist of C code with special macros� Each macro is sur�
rounded by the ff gg escape sequence� The following macros are recognized by wrappergen�

��fileno��

�Swing ����� requires at least JDK ����
� so in principle Jumpshot��may have problem with JDK�������

��

An integral index representing which wrapper �le the macro came from� This
is useful when declaring �le�global variables to prevent name collisions� It is
suggested that all identi�ers declared outside functions end with ���fileno���
For example�

static double overhead�time���fileno��

might expand to�

static double overhead�time�	

�end of example��

��forallfn �function name escape� �function A� �function B� ��� ��

���

��endforallfn��

The code between ��forallfn�� and ��endforallfn�� is copied once for every
function pro�led� except for the functions listed� replacing the escape string
speci�ed by �function name escape� with the name of each function� For
example�

��forallfn fn�name��static int ��fn�name���ncalls���fileno��

��endforallfn��

might expand to�

static int MPI�Send�ncalls��

static int MPI�Recv�ncalls��

static int MPI�Bcast�ncalls��

�end of example�

��foreachfn �function name escape� �function A� �function B� ��� ��

���

��endforeachfn��

��foreachfn�� is the same as ��forallfn�� except that wrappers are written
only the functions named explicitly� For example�

��forallfn fn�name mpi�send mpi�recv��

static int ��fn�name���ncalls���fileno��

��endforallfn��

might expand to�

static int MPI�Send�ncalls��

static int MPI�Recv�ncalls��

�end of example�

��

��fnall �function name escape� �function A� �function B� ��� ��

���

��callfn��

���

��endfnall��

��fnall�� de�nes a wrapper to be used on all functions except the functions
named� Wrappergen will expand into a full function de�nition in traditional
C format� The ��callfn�� macro tells wrappergen where to insert the call
to the function that is being pro�led� There must be exactly one instance
of the ��callfn�� macro in each wrapper de�nition� The macro speci�ed by
�function name escape� will be replaced by the name of each function�

Within a wrapper de�nition� extra macros are recognized�

��vardecl �type� �arg� �arg� ��� ��

Use vardecl to declare variables within a wrapper de�nition� If
nested macros request variables through vardecl with the same names�
wrappergen will create unique names by adding consecutive integers to
the end of the requested name �var� var�� var�� ���� until a unique name
is created� It is unwise to declare variables manually in a wrapper
de�nition� as variable names may clash with other wrappers� and the
variable declarations may occur later in the code than statements from
other wrappers� which is illegal in classical and ANSI C�

���varname���

If a variable is declared through vardecl� the requested name for
that variable �which may be di�erent from the uniqui�ed form that
will appear in the �nal code� becomes a temporary macro that will
expand to the uniqui�ed form� For example�

��vardecl int i d��

may expand to�

int i� d�

�end of example�

���argname���

Suggested but not neccessary� a macro consisting of the name of one
of the arguments to the function being pro�led will be expanded to
the name of the corresponding argument� This macro option serves
little purpose other than asserting that the function being pro�lied
does indeed have an argument with the given name�

���argnum���

Arguments to the function being pro�led may also be referenced by
number� starting with
 and increasing�

��

��returnVal��

ReturnVal expands to the variable that is used to hold the return
value of the function being pro�led�

��callfn��

callfn expands to the call of the function being pro�led� With nested wrapper
de�nitions� this also represents the point at which to insert the code for any
inner nested functions� The nesting order is determined by the order in which
the wrappers are encountered by wrappergen� For example� if the two �les
�prof��w� and �prof��w� each contain two wrappers for MPI Send� the pro�ling
code produced when using both �les will be of the form�

int MPI�Send� args���

arg declarations���

�

��pre�callfn code from wrapper � from prof��w ��

��pre�callfn code from wrapper � from prof��w ��

��pre�callfn code from wrapper � from prof��w ��

��pre�callfn code from wrapper � from prof��w ��

returnVal � MPI�Send� args���

��post�callfn code from wrapper � from prof��w ��

��post�callfn code from wrapper � from prof��w ��

��post�callfn code from wrapper � from prof��w ��

��post�callfn code from wrapper � from prof��w ��

return returnVal

�

��fn �function name escape� �function A� �function B� ��� ��

���

��callfn��

���

��endfnall��

fn is identical to fnall except that it only generates wrappers for functions
named explicitly� For example�

��fn this�fn MPI�Send��

��vardecl int i��

��callfn��

printf� �Call to ��this�fn����n�

printf� ���i�� was not used��n�

printf� �The first argument to ��this�fn�� is ��	���n�

��endfn��

�	

will expand to�

int MPI�Send� buf� count� datatype� dest� tag� comm

void � buf

int count

MPI�Datatype datatype

int dest

int tag

MPI�Comm comm

�

int returnVal

int i

returnVal � PMPI�Send� buf� count� datatype� dest� tag� comm

printf� �Call to MPI�Send��n�

printf� �i was not used��n�

printf� �The first argument to MPI�Send is buf�n�

return returnVal

�

A sample wrapper �le is in �sample�w� and the corresponding output �le is in �sample�out��

D Manual Pages

The MPE routines can be divided into six classes�

Logging routines MPE�Describe�event MPE�Describe�state MPE�Finish�log

MPE�Init�log MPE�Log�event MPE�Log�get�event�number MPE�Log�receive

MPE�Log�send MPE�Start�log MPE�Stop�log

X window graphics MPE�Add�RGB�color MPE�CaptureFile MPE�Close�graphics

MPE�Draw�circle MPE�Draw�line MPE�Draw�logic MPE�Draw�point

MPE�Draw�points MPE�Draw�string MPE�Fill�circle MPE�Fill�rectangle

MPE�Get�mouse�press MPE�Iget�mouse�press MPE�Line�thickness

MPE�Make�color�array MPE�Num�colors MPE�Open�graphics MPE�Update

Sequential Section MPE�Seq�begin MPE�Seq�end

Shared counter MPE�Counter�create MPE�Counter�free MPE�Counter�nxtval

Tag management MPE�GetTags MPE�ReturnTags MPE�TagsEnd

Miscellaneous MPE�Comm�global�rank MPE�Decomp�d MPE�Errors�call�debugger

MPE�IO�Stdout�to�file MPE�Print�datatype�pack�action

MPE�Print�datatype�unpack�action MPE�Ptime MPE�Signals�call�debugger

MPE�Wtime

�

Acknowledgments

The work described in this report has bene�ted from conversations with and use by a large
number of people� We also thank those that have helped in the implementation of MPE�
particularly Edward Karrels�

Debbie Swider had maintained MPE in MPICH�����
 and before� Omer Zaki did the
�rst implementation of Jumpshot� Jumpshot��� Abhi Shandilya did the original clog�slog
converter� Anthony Chan implemented SLOG�API� extended the Jumpshot�� to Jumpshot��
to support SLOG� integrated SLOG�API� clog�slog� Jumpshot�� and Jumpshot�� into
MPE�

References

��� William Gropp� Ewing Lusk� Nathan Doss� and Anthony Skjellum� A high�performance�
portable implementation of the MPI message�passing interface standard� Parallel Com�
puting� ���
�� ���� ���	�

��� M� T� Heath� Recent developments and case studies in performance visualization
using ParaGraph� In G� Haring and G� Kotsis� editors� Performance Measurement and

Visualization of Parallel Systems� pages �
� �

� Amsterdam� The Netherlands� �����
Elsevier Science Publishers�

��� Virginia Herrarte and Ewing Lusk� Studying parallel program behavior with upshot�
Technical Report ANL ������ Argonne National Laboratory� Argonne� IL 	
���� �����

��� Message Passing Interface Forum� MPI� A message�passing interface standard� Inter�

national Journal of Supercomputer Applications� ������� �����

��� Omer Zaki� Ewing Lusk� William Gropp� and Deborah Swider� Toward scalable per�
formance visualization with Jumpshot� High Performance Computing Applications�
�������

 ���� Fall �����

��

