
LAM/MPI User’s Guide
Version 7.0.6

The LAM/MPI Team
Open Systems Lab

http://www.lam-mpi.org/

May 12, 2004

http://www.lam-mpi.org/

Copyright c© 2001-2003 The Trustees of Indiana University. All rights reserved.
Copyright c© 1998-2001 University of Notre Dame. All rights reserved.
Copyright c© 1994-1998 The Ohio State University. All rights reserved.

This file is part of the LAM/MPI software package. For license information, see the LICENSE file in the
top level directory of the LAM/MPI source distribution.

Theptmalloc package used in thegm RPI SSI module is Copyrightc© 1999 Wolfram Gloger.

Contents

1 Don’t Panic! (Who Should Read This Document?) 9

2 Introduction to LAM/MPI 11
2.1 About MPI .11
2.2 About LAM/MPI .11

3 Release Notes 13
3.1 New Feature Overview. .13
3.2 Platform-Specific Notes. .14

3.2.1 Provided RPMs. .14
3.2.2 Filesystem Issues. .15
3.2.3 Dynamic/Embedded Environments. 16
3.2.4 Linux .16
3.2.5 Microsoft Windows(TM)(Cygwin) . 16
3.2.6 Solaris .16

4 Getting Started with LAM/MPI 17
4.1 One-Time Setup. .17

4.1.1 Setting the Path. .17
4.1.2 Finding the LAM Manual Pages. .19

4.2 System Services Interface (SSI). .19
4.3 What Does Your LAM/MPI Installation Support?. 20
4.4 Booting the LAM Run-Time Environment. 20

4.4.1 The Boot Schema File (a.k.a, “Hostfile”, “Machinefile”). 20
4.4.2 Thelamboot Command .20
4.4.3 Thelamnodes Command .22

4.5 Compiling MPI Programs. .22
4.5.1 Sample MPI Program in C. .23
4.5.2 Sample MPI Program in C++. .23
4.5.3 Sample MPI Program in Fortran. .24

4.6 Running MPI Programs. .24
4.6.1 Thempirun Command .25
4.6.2 Thempiexec Command .26
4.6.3 Thempitask Command .27
4.6.4 Thelamclean Command .27

4.7 Shutting Down the LAM Universe. .27

3

4 CONTENTS

5 Supported MPI Functionality 29
5.1 MPI-1 Support .29

5.1.1 Language Bindings. .29
5.1.2 MPI CANCEL .29

5.2 MPI-2 Support .29
5.2.1 Miscellany .29
5.2.2 Process Creation and Management. 32
5.2.3 One-Sided Communication. .32
5.2.4 Extended Collective Operations. .32
5.2.5 External Interfaces. .33
5.2.6 I/O .33
5.2.7 Language Bindings. .34

6 System Services Interface (SSI) Overview 35
6.1 Types and Modules. .35
6.2 Terminology. .35
6.3 SSI Parameters. .36

6.3.1 Naming Conventions. .36
6.3.2 Setting Parameter Values. .37

6.4 Selecting Modules .38
6.4.1 Specifying Modules .38
6.4.2 Setting Priorities. .39
6.4.3 Selection Algorithm .39

7 LAM/MPI Command Quick Reference 41
7.1 Thelamboot Command. .41

7.1.1 Multiple Sessions on the Same Node. 42
7.1.2 Avoiding Running on Specific Nodes. 42

7.2 Thelamclean Command. .43
7.3 Thelamexec Command. .43
7.4 Thelamgrow Command. .43
7.5 Thelamhalt Command. .44
7.6 Thelaminfo Command. .44
7.7 Thelamnodes Command. .46
7.8 Thelamshrink Command .46
7.9 Thempicc , mpiCC / mpic++ , andmpif77 Commands 46

7.9.1 Deprecated Names. .47
7.10 Thempiexec Command. .47

7.10.1 General Syntax. .48
7.10.2 Launching MPMD Processes. .48
7.10.3 Launching MPI Processes with No Established LAM Universe. 49

7.11 Thempimsg Command (Deprecated). .49
7.12 Thempirun Command .49

7.12.1 Simple Examples. .49
7.12.2 Controlling Where Processes Are Launched. 50
7.12.3 Per-Process Controls. .51
7.12.4 Ability to Pass Environment Variables. 51

CONTENTS 5

7.12.5 Current Working Directory Behavior. 51
7.13 Thempitask Command. .52
7.14 Therecon Command .52
7.15 Thetping Command .52
7.16 Thewipe Command .53

8 Available LAM Modules 55
8.1 Booting the LAM Run-Time Environment. 55

8.1.1 Boot Schema Files (a.k.a., “Hostfiles” or “Machinefiles”). 55
8.1.2 Minimum Requirements. .56
8.1.3 Selecting aboot Module .57
8.1.4 boot SSI Parameters. .57
8.1.5 Thebproc Module .57
8.1.6 Theglobus Module .59
8.1.7 Thersh Module (includingssh) . 60
8.1.8 Thetm Module (OpenPBS / PBS Pro). 61

9 Available MPI Modules 63
9.1 MPI Module Selection Process. .63
9.2 MPI Point-to-point Communication (Request Progression Interface / RPI). 64

9.2.1 Two Different Shared Memory RPI Modules. 64
9.2.2 Thecrtcp Module (Checkpoint-able TCP Communication). 64
9.2.3 Thegm Module (Myrinet) .65
9.2.4 Thelamd Module (Daemon-Based Communication). 68
9.2.5 Thesysv Module (Shared Memory Using System V Semaphores). 69
9.2.6 Thetcp Module (TCP Communication). 71
9.2.7 Theusysv Module (Shared Memory Using Spin Locks). 71

9.3 MPI Collective Communication. .72
9.3.1 Selecting acoll Module .73
9.3.2 coll SSI Parameters. .73
9.3.3 Thelam basic Module. .74
9.3.4 Thesmp Module .75

9.4 Checkpoint/Restart of MPI Jobs. .75
9.4.1 Selecting acr Module .77
9.4.2 cr SSI Parameters. .77
9.4.3 Theblcr Module .77

10 Debugging Parallel Programs 81
10.1 Naming MPI Objects. .81
10.2 TotalView Parallel Debugger. .81

10.2.1 Attaching TotalView to MPI Processes. 82
10.2.2 Suggested Use. .83
10.2.3 Limitations .84
10.2.4 Message Queue Debugging. .84

10.3 Serial Debuggers. .85
10.3.1 Lauching Debuggers. .85
10.3.2 Attaching Debuggers. .86

10.4 Memory-Checking Debuggers. .86

6 CONTENTS

11 Troubleshooting 87
11.1 The LAM/MPI Mailing Lists .87

11.1.1 Announcements. .87
11.1.2 General Discussion / User Questions. 87

11.2 LAM Run-Time Environment Problems. .88
11.2.1 Problems with thelamboot Command. 88

11.3 MPI Problems. .89

12 Miscellaneous 91
12.1 Singleton MPI Processes. .91
12.2 MPI-2 I/O Support .91
12.3 Fortran Process Names. .91
12.4 MPI Thread Support. .92

12.4.1 Thread Level. .92
12.5 MPI-2 Name Publishing. .92
12.6 Interoperable MPI (IMPI) Support. .93

12.6.1 Purpose of IMPI. .93
12.6.2 Current IMPI functionality. .93
12.6.3 Running an IMPI Job. .94

12.7 Batch Queueing System Support. .94
12.8 Location of LAM’s Session Directory. .94
12.9 Signal Catching. .95

List of Tables

3.1 SSI modules that are included in the official LAM/MPI RPMs.. 15

4.1 List of common shells and the corresponding environment setup files for interactive shells.. 18
4.2 List of common shells and the corresponding environment setup files for non-interactive shells.18

5.1 Supported MPI-2 info functions.. .30
5.2 Supported MPI-2 handle conversion functions.. 31
5.3 Supported MPI-2 error handler functions.. 31
5.4 Supported MPI-2 new datatype manipulation functions.. 31
5.5 Supported MPI-2 dynamic functions.. .32
5.6 Supported MPI-2 one-sided functions.. .32
5.7 Major topics in the MPI-2 chapter “External Interfaces”, and LAM’s level of support.. . . . 33
5.8 Supported MPI-2 external interface functions, grouped by function.. 33

6.1 SSI module types and their corresponding scopes.. 36

8.1 SSI parameters for thebproc boot module. 58
8.2 SSI parameters for theglobus boot module.. 60
8.3 SSI parameters for thersh boot module.. .61
8.4 SSI parameters for thetm boot module. .62

9.1 SSI parameters for thecrtcp RPI module. 65
9.2 SSI parameters for thegm RPI module. .66
9.3 SSI parameters for thelamd RPI module. 69
9.4 SSI parameters for thesysv RPI module. 70
9.5 SSI parameters for thetcp RPI module. .71
9.6 SSI parameters for theusysv RPI module.. 72
9.7 Listing of MPI collective functions indicating which have been optimized for SMP environ-

ments. .76

12.1 Valid values for theLAMMPI THREADLEVELenvironment variable.. 92

7

8 LIST OF TABLES

Chapter 1

Don’t Panic! (Who Should Read This
Document?)

This document probably looks huge to new users. But don’t panic! It is divided up into multiple, relatively
independent sections that can be read and digested separately. Although this manual covers a lot of relevant
material for all users, the following guidelines are suggested for various types of users. If you are:

• New to MPI: First, read Chapter2 for an introduction to MPI and LAM/MPI. A good reference on
MPI programming is also strongly recommended; there are several books available as well as excellent
on-line tutorials (e.g., [3, 4, 5, 9]).

When you’re comfortable with the concepts of MPI, move on toNew to LAM/MPI .

• New to LAM/MPI : If you’re familiar with MPI but unfamiliar with LAM/MPI, first read Chapter4
for a mini-tutorial on getting started with LAM/MPI. You’ll probably be familiar with many of the
concepts described, and simply learn the LAM terminology and commands. Glance over and use as a
reference Chapter7 for the rest of the LAM/MPI commands. Chapter11contains some quick tips on
common problems with LAM/MPI.

Assuming that you’ve already got MPI codes that you want to run under LAM/MPI, read Chapter5
to see exactly what MPI-2 features LAM/MPI supports.

When you’re comfortable with all this, move on toPrevious LAM user.

• Previous LAM user: As a previous LAM user, you’re probably already fairly familiar with all the
LAM commands – their basic functionality hasn’t changed much. However, many of them have grown
new options and capabilities, particularly in the area of run-time tunable parameters. So be sure to
read Chapters6 to learn about LAM’s System Services Interface (SSI), Chapters8 and9 (LAM and
MPI SSI modules), and finally Chapter12 (miscellaneous LAM/MPI information, features, etc.).

If you’re curious to see a brief listing of new features in this release, see the release notes in Chapter3.
This isn’t really necessary, but when you’re kicking the tires of this version, it’s a good way to ensure
that you are aware of all the new features.

Finally, even for the seasoned MPI and LAM/MPI veteran, be sure to check out Chapter10 for infor-
mation about debugging MPI programs in parallel.

• System administrator: Unless you’re also a parallel programmer, you’re reading the wrong docu-
ment. You should be reading the LAM/MPI Installation Guide [14] for detailed information on how
to configure, compile, and install LAM/MPI.

9

10 CHAPTER 1. DON’T PANIC! (WHO SHOULD READ THIS DOCUMENT?)

Chapter 2

Introduction to LAM/MPI

This chapter provides a quick summary of the MPI standard and the LAM/MPI implementation of that
standard.

2.1 About MPI

The Message Passing Interface (MPI) [2, 7], is a set of API functions enabling programmers to write high-
performance parallel programs that pass messages between serial processes to make up an overall parallel
job. MPI is the culmination of decades of research in parallel computing, and was created by the MPI
Forum – an open group representing a wide cross-section of industry and academic interests. More infor-
mation, including the both volumes of the official MPI standard, can be found at the main MPI Forum web
site.1

MPI is suitable for “big iron” parallel machines such as the IBM SP, SGI Origin, etc., but it also works in
smaller environments such as a group of workstations. Since clusters of workstations are readily available at
many institutions, it has become common to use them as a single parallel computing resource running MPI
programs. The MPI standard was designed to support portability and platform independence. As a result,
users can enjoy cross-platform development capability as well as transparent heterogenous communication.
For example, MPI codes which have been written on the RS-6000 architecture running AIX can be ported
to a SPARC architecture running Solaris with little or no modifications.

2.2 About LAM/MPI

LAM/MPI is a high-performance, freely available, open source implementation of the MPI standard that is
researched, developed, and maintained at the Open Systems Lab at Indiana University. LAM/MPI supports
all of the MPI-1 Standard and much of the MPI-2 standard. More information about LAM/MPI, including
all the source code and documentation, is available from the main LAM/MPI web site.2

LAM/MPI is not only a library that implements the mandated MPI API, but also the LAM run-time
environment: a user-level, daemon-based run-time environment that provides many of the services required
by MPI programs. Both major components of the LAM/MPI package are designed as component frame-
works – extensible with small modules that are selectable (and configurable) at run-time. This component
framework is known as the System Services Interface (SSI). The SSI component architectures are fully
documented in [8, 10, 11, 12, 13, 14, 15].

1http://www.mpi-forum.org/
2http://www.lam-mpi.org/

11

http://www.mpi-forum.org/
http://www.lam-mpi.org/

12 CHAPTER 2. INTRODUCTION TO LAM/MPI

Chapter 3

Release Notes

This chapter contains release notes as they pertain to the run-time operation of LAM/MPI. The Installation
Guide contains additional release notes on the configuration, compilation, and installation of LAM/MPI.

3.1 New Feature Overview

A full, high-level overview of all changes in the 7 series (and previous versions) can be found in the
HISTORYfile that is included in the LAM/MPI distribution.

Major new features specific to the 7 series include the following:

• LAM/MPI 7.0 is the first version to feature the System Services Interface (SSI). SSI is a “pluggable”
framework that allows for a variety of run-time selectable modules to be used in MPI applications.
For example, the selection of which network to use for MPI point-to-point message passing is now a
run-time decision, not a compile-time decision.

• When used with supported back-end checkpoint/restart systems, LAM/MPI can checkpoint parallel
MPI jobs (see Section9.4, page75 for more details).

• LAM/MPI supports the following underlying networks for MPI communication, including several
run-time tunable-parameters for each (see Section9.2, page64 for more details):

– TCP/IP, using direct peer-to-peer sockets

– Myrinet, using the native gm message passing library

– Shared memory, using either spin locks or semaphores

– “LAM Daemon” mode, using LAM’s native run-time environment message passing

• LAM’s run-time environment can now be “natively” executed in the following environments (see
Section8.1, page55 for more details):

– BProc clusters

– Globus grid environments (beta level support)

– Traditionalrsh / ssh -based clusters

– OpenPBS/PBS Pro batch queue jobs

13

14 CHAPTER 3. RELEASE NOTES

• Several collective algorithms have now been made “SMP-aware”, exhibiting better performance when
enabled and executed on clusters of SMPs (see Section9.3, page72 for more details).

• Full support of the TotalView parallel debugger (see Section10.2, page81 for more details).

• Support for the MPI-2 portable MPI process startup commandmpiexec (see Section7.10, page47
for more details).

• Full documentation for system administrators, users, and developers [8, 10, 11, 12, 13, 14, 15].

• Various MPI enhancements:

– C++ bindings are provided for all supported MPI functionality.

– Upgraded the included ROMIO package [16, 17] to version 1.2.5.1 for MPI I/O support.

– Per MPI-2:4.8 free theMPI COMM SELF communicator at the beginning ofMPI FINALIZE,
allowing user-specified functions to be automatically invoked.

– Formal support forMPI THREAD SINGLE, MPI THREAD FUNNELED, andMPI THREAD -
SERIALIZED. MPI THREAD MULTIPLE is not supported (see Section12.4, page92for more
details).

– Significantly increased the number of tags and communicators supported in most RPIs.

– Enhanced scheduling capabilities forMPI COMM SPAWN.

• Various LAM run-time environment enhancements:

– New laminfo command that provides detailed information about a given LAM/MPI installa-
tion.

– UseTMPDIR environment variable for LAM’s session directory.

– Restore the originalumask when creating MPI processes.

– Allow Fortran MPI processes to change how their name shows up inmpitask .

– BetterSIGTERMsupport in the LAM daemon; catch the signal and ensure that all sub-processes
are killed and resources are released.

• Deprecated functionality (may disappear in future releases of LAM/MPI):

– LAMRSH: TheLAMRSHenvironment variable has been deprecated in favor of theboot rsh -
agent parameter to thersh SSI boot module.

– LAMMPI SOCKETSUFFIX : TheLAMMPI SOCKETSUFFIX has been deprecated in favor
of theLAMMPI SESSIONSUFFIX environment variable.

3.2 Platform-Specific Notes

3.2.1 Provided RPMs

If you install LAM/MPI via an official RPM from the LAM/MPI web site (or one of its mirrors), you may
not have all the SSI modules that are described in Chapters8 and9. The modules that are shipped in 7.0.6
are listed in Table3.1. If you need modules that are not provided in the RPMs, you will likely need to
download and install the source LAM/MPI tarball.

This is for multiple reasons:

3.2. PLATFORM-SPECIFIC NOTES 15

Boot Collective Checkpoint/Restart RPI

globus lam basic <none> crtcp
rsh smp lamd

sysv
tcp

usysv

Table 3.1: SSI modules that are included in the official LAM/MPI RPMs.

• If provided as a binary, each SSI module may require a specific configuration (e.g., a specific version
of the back-end software that it links to/interacts with). Since each SSI module is orthogonal to other
modules, and since the back-end software systems that each SSI module interacts with may release
new versions at any time, the number of combinations that would need to be provided is exponential.

The logistics of attempting to provide pre-compiled binaries for all of these configurations is beyond
the capability of the LAM Team. As a direct result, significant effort has going into making building
LAM/MPI from the source distribution as simple and all-inclusive as possible.

• Although LAM/MPI is free software (and freely distributable), some of the systems that its modules
can interact with are not. The LAM Team cannot distribute modules that contain references to non-
freely-distributable code.

The laminfo command can be used to see which SSI modules are available in your LAM/MPI instal-
lation.

3.2.2 Filesystem Issues

Case-insensitive filesystems.On systems with case-insensitive filesystems (such as Mac OS X with
HFS+, or Linux with NTFS), thempicc andmpiCC commands will both refer to the same executable.
This obviously makes distinguishing between thempicc andmpiCC wrapper compilers impossible. LAM
will attempt to determine if you are building on a case-insensitive filesystem. If you are, the C++ wrapper
compiler will be calledmpic++ . Otherwise, the C++ compiler will be calledmpiCC (althoughmpic++
will also be available).

NFS-shared/tmp . The LAM per-session directory may not work properly when hosted in an NFS di-
rectory, and may cause problems when running MPI programs and/or supplementary LAM run-time en-
vironment commands. If using a local filesystem is not possible (e.g., on diskless workstations), the use
of tmpfs or tinyfs is recommended. LAM’s session directory will not grow large; it contains a small
amount of meta data as well as known endpoints for Unix sockets to allow LAM/MPI programs to contact
the local LAM run-time environment daemon.

AFS and tokens/permissions. AFS has some peculiarities, especially with file permissions when using
rsh /ssh .

Many sites tend to install the AFSrsh replacement that passes tokens to the remote machine as the
defaultrsh . Similarly, most modern versions ofssh have the ability to pass AFS tokens. Hence, if you are
using thersh boot module withrecon or lamboot , your AFS token will be passed to the remote LAM
daemon automatically. If your site does not install the AFS replacementrsh as the default, consult the
documentation on--with-rsh to see how to set the path to thersh that LAM will use.

16 CHAPTER 3. RELEASE NOTES

Once you use the replacementrsh or an AFS-capablessh , you should get a token on the target node
when using thersh boot module.1 This means that your LAM daemons are running with your AFS token,
and you should be able to run any program that you wish, including those that are notsystem:anyuser
accessible. You will even be able to write into AFS directories where you have write permission (as you
would expect).

Keep in mind, however, that AFS tokens have limited lives, and will eventually expire. This means that
your LAM daemons (and user MPI programs) will lose their AFS permissions after some specified time
unless you renew your token (with theklog command, for example) on the originating machine before the
token runs out. This can play havoc with long-running MPI programs that periodically write out file results;
if you lose your AFS token in the middle of a run, and your program tries to write out to a file, it will not
have permission to, which may cause Bad Things to happen.

If you need to run long MPI jobs with LAM on AFS, it is usually advisable to ask your AFS administrator
to increase your default token life time to a large value, such as 2 weeks.

3.2.3 Dynamic/Embedded Environments

In LAM/MPI version 7.0.6, thegm RPI includes theptmalloc package as a substitute memory allocation
mechanism (see Section9.2.3, page67 for more details). This can cause problems when running MPI
processes as dynamically loaded modules. For example, when running a LAM/MPI program as a MEX
function in a Matlab environment, normal Unix linker semantics create situations where both the default
Unix and theptmalloc memory management systems are used. This typically results in process failure.

Note that thisonlyoccurs when LAM/MPI processes are used in a dynamic environment and thegm RPI
module is included in LAM/MPI on systems whereptmalloc is used (i.e., not Solaris). This appears to
occur because of normal Unix semantics, and the only way to avoid it is to not use theptmalloc package
that is included in LAM forgm memory management. See the LAM/MPI Installation Guide for details on
how to disableptmalloc .

3.2.4 Linux

LAM/MPI is frequently used on Linux-based machines (IA-32 and otherwise). Although LAM/MPI is
generally tested on Red Hat and Mandrake Linux systems using recent kernel versions, it should work on
other Linux distributions as well.

Note that kernel versions 2.2.0 through 2.2.9 had some TCP/IP performance problems. It seems that
version 2.2.10 fixed these problems; if you are using a Linux version between 2.2.0 and 2.2.9, LAM may
exhibit poor TCP performance due to the Linux TCP/IP kernel bugs. We recommend that you upgrade to
2.2.10 (or the latest version). Seehttp://www.lam-mpi.org/linux/ for a full discussion of the
problem.

3.2.5 Microsoft Windows(TM)(Cygwin)

LAM/MPI does not yet support Microsoft Windows(TM) or Cygwin environments.

3.2.6 Solaris

Thegm RPI will fail to function properly on versions of Solaris older than Solaris 7.

1If you are using a different boot module, you may experience problems with obtaining AFS tokens on remote nodes.

http://www.lam-mpi.org/linux/

Chapter 4

Getting Started with LAM/MPI

This chapter provides a summary tutorial describing some of the high points of using LAM/MPI. It is not
intended as a comprehensive guide; the finer details of some situations will not be explained. However, it is
a good step-by-step guide for users who are new to MPI and/or LAM/MPI.

Using LAM/MPI is conceptually simple:

• Launch the LAM run-time environment (RTE)

• Repeat as necessary:

– Compile MPI program(s)

– Run MPI program(s)

• Shut down the LAM run-time environment

The tutorial below will describe each of these steps.

4.1 One-Time Setup

This section describes actions that usually only need to be performed once per user in order to setup LAM
to function properly.

4.1.1 Setting the Path

One of the main requirements for LAM/MPI to function properly is for the LAM executables to be in your
path. This step may vary from site to site; for example, the LAM executables may already be in your path –
consult your local administrator to see if this is the case.

NOTE: If the LAM executables are already in your path, you can skip this step and proceed to Sec-
tion 4.2.

In many cases, if your system does not already provide the LAM executables in your path, you can add
them by editing your “dot” files that are executed automatically by the shell upon login (both interactive and
non-interactive logins). Each shell has a different file to edit and corresponding syntax, so you’ll need to
know which shell you are using. Tables4.1and4.2 list several common shells and the associated files that
are typically used. Consult the documentation for your shell for more information.

You’ll also need to know the directory where LAM was installed. For the purposes of this tutorial, we’ll
assume that LAM is installed in/usr/local/lam . And to re-emphasize a critical point: these are only

17

18 CHAPTER 4. GETTING STARTED WITH LAM/MPI

Shell name Interactive login startup file
sh (or Bash
named “sh ”)

.profile

csh .cshrc followed by.login
tcsh .tcshrc if it exists, .cshrc if it does not, followed by

.login
bash .bash profile if it exists, or .bash login if it exists, or

.profile if it exists (in that order). Note that some Linux dis-
tributions automatically come with.bash profile scripts for
users that automatically execute.bashrc as well. Consult the
bash manual page for more information.

Table 4.1: List of common shells and the corresponding environmental setup files commonly used with each
for interactive startups (e.g., normal login). All files listed are assumed to be in the$HOMEdirectory.

Shell name Non-interactive login startup file
sh (or Bash
named “sh ”)

This shell does not execute any file automatically, so LAM will
execute the.profile script before invoking LAM executables
on remote nodes

csh .cshrc
tcsh .tcshrc if it exists, .cshrc if it does not
bash .bashrc if it exists

Table 4.2: List of common shells and the corresponding environmental setup files commonly used with each
for non-interactive startups (e.g., normal login). All files listed are assumed to be in the$HOMEdirectory.

4.2. SYSTEM SERVICES INTERFACE (SSI) 19

guidelines – the specifics may vary depending on your local setup. Consult your local system or network
administrator for more details.

Once you have determined all three pieces of information (what shell you are using, what directory
LAM was installed to, and what the appropriate “dot” file to edit), open the “dot” file in a text editor and
follow the general directions listed below:

• For the Bash, Bourne, and Bourne-related shells, add the following lines:� �
PATH=/usr/local/lam/bin:$PATH
export PATH� �

• For the C shell and related shells (such astcsh), add the following line:� �
set path= (/usr/local/lam/bin $path)� �

4.1.2 Finding the LAM Manual Pages

LAM includes manual pages for all supported MPI functions as well as all of the LAM executables. While
this stepis not necessaryfor correct MPI functionality, it can be helpful when looking for MPI or LAM-
specific information.

Using Tables4.1 and4.2, find the right “dot” file to edit. Assuming again that LAM was installed to
/usr/local/lam , open the appropriate “dot” file in a text editor and follow the general directions listed
below:

• For the Bash, Bourne, and Bourne-related shells, add the following lines:� �
MANPATH=/usr/local/lam/man:$MANPATH
export MANPATH� �

• For the C shell and related shells (such astcsh), add the following lines:� �
if ($?MANPATH == 0)then

setenvMANPATH /usr/local/lam/man
else

setenvMANPATH /usr/local/lam/man:$MANPATH
endif� �

4.2 System Services Interface (SSI)

LAM/MPI is built around a core of System Services Interface (SSI) plugin modules. SSI allows run-time
selection of different underlying services within the LAM/MPI run-time environment, including tunable
parameters that can affect the performance of MPI programs.

While this tutorial won’t go into much detail about SSI, just be aware that you’ll see mention of “SSI”
in the text below. In a few places, the tutorial passes parameters to various SSI modules through either
environment variables and/or the-ssi command line parameter to several LAM commands.

See other sections in this manual for a more complete description of SSI (Chapter6, page35), how it
works, and what run-time parameters are available (Chapters8 and9, pages55 and63, respectively). Also,
thelamssi(7) , lamssi boot(7) , lamssi coll(7) , lamssi cr(7) , andlamssi rpi(7) man-
ual pages each provide additional information on LAM’s SSI mechanisms.

20 CHAPTER 4. GETTING STARTED WITH LAM/MPI

4.3 What Does Your LAM/MPI Installation Support?

LAM/MPI can be installed with a large number of configuration options. It depends on what choices your
system/network administrator made when configuring and installing LAM/MPI. Thelaminfo command
is provided to show the end-user with information about what the installed LAM/MPI supports. Running
“ laminfo ” (with no arguments) prints a list of LAM’s capabilities, including all of its SSI modules.

Among other things, this shows what language bindings the installed LAM/MPI supports, what under-
lying network transports it supports, and what directory LAM was installed to. The-parsable option
prints out all the same information, but in a conveniently machine-parsable format (suitable for using with
scripts).

4.4 Booting the LAM Run-Time Environment

Before any MPI programs can be executed, the LAM run-time environment must be launched. This is
typically called “booting LAM.” A successfully boot process creates an instance of the LAM run-time
environment commonly referred to as the “LAM universe.”

LAM’s run-time environment can be executed in many different environments. For example, it can be
run interactively on a cluster of workstations (even on a single workstation, perhaps to simulate parallel
execution for debugging and/or development). Or LAM can be run in production batch scheduled systems.

This example will focus on a traditionalrsh / ssh -style workstation cluster (i.e., not under batch
systems), wherersh or ssh is used to launch executables on remote workstations.

4.4.1 The Boot Schema File (a.k.a, “Hostfile”, “Machinefile”)

When usingrsh or ssh to boot LAM, you will need a text file listing the hosts on which to launch the LAM
run-time environment. This file is typically referred to as a “boot schema”, “hostfile”, or “machinefile.” For
example:� �
My boot schema
node1.cluster.example.com
node2.cluster.example.com
node3.cluster.example.com cpu=2
node4.cluster.example.com cpu=2� �

Four nodes are specified in the above example by listing their IP hostnames. Note also the “cpu=2 ” that
follows the last two entries. This tells LAM that these machines each have two CPUs available for running
MPI programs (e.g.,node3 andnode4 are two-way SMPs). It is important to note that the number of
CPUs specified here hasno correlation to the physicial number of CPUs in the machine. It is simply a
convenience mechanism telling LAM how many MPI processes we will typically launch on that node. The
ramifications of thecpu key will be discussed later.

The location of this text file is irrelevant; for the purposes of this example, we’ll assume that it is named
hostfile and is located in the current working directory.

4.4.2 Thelamboot Command

The lamboot command is used to launch the LAM run-time environment. For each machine listed in the
boot schema, the following conditions must be met for LAM’s run-time environment to be booted correctly:

• The machine must be reachable and operational.

4.4. BOOTING THE LAM RUN-TIME ENVIRONMENT 21

• The user must be able to non-interactively execute arbitrary commands on the machine (e.g., without
being prompted for a password).

• The LAM executables must be locatable on that machine, using the user’s shell search path.

• The user must be able to write to the LAM session directory (usually somewhere under/tmp).

• The shell’s start-up scripts must not print anything on standard error.

• All machines must be able to resolve the fully-qualified domain name (FQDN) of all the machines
being booted (including itself).

Once all of these conditions are met, thelamboot command is used to launch the LAM run-time
environment. For example:� �
shell$ lamboot−v −ssi boot rsh hostfile

LAM 7.0/MPI 2 C++/ROMIO− Indiana University

n0<1234> ssi:boot:base:linear: booting n0 (node1.cluster.example.com)
n0<1234> ssi:boot:base:linear: booting n1 (node2.cluster.example.com)
n0<1234> ssi:boot:base:linear: booting n2 (node3.cluster.example.com)
n0<1234> ssi:boot:base:linear: booting n3 (node4.cluster.example.com)
n0<1234> ssi:boot:base:linear: finished� �

The parameters passed tolamboot in the example above are as follows:

• -v : Make lamboot be slightly verbose.

• -ssi boot rsh : Ensure that LAM uses thersh /ssh boot module to boot the LAM universe.
Typically, LAM chooses the right boot module automatically (and therefore this parameter is not
typically necessary), but to ensure that this tutorial does exactly what we want it to do, we use this
parameter to absolutely ensure that LAM usesrsh or ssh to boot the universe.

• hostfile : Name of the boot schema file.

Common causes of failure with thelamboot command include (but are not limited to):

• User does not have permission to execute on the remote node. This typically involves setting up a
$HOME/.rhosts file (if using rsh), or properly configured SSH keys (using usingssh).

Setting up.rhosts and/or SSH keys for password-less remote logins are beyond the scope of this
tutorial; consult local documentation forrsh andssh , and/or internet tutorials on setting up SSH
keys.1

• The first time a user usesssh to execute on a remote node,ssh typically prints a warning to the
standard error. LAM will interpret this as a failure. If this happens,lamboot will complain that
something unexpectedly appeared onstderr , and abort. The solution is to manuallyssh to each
node in the boot schema once in order to eliminate thestderr warning, and then trylamboot
again.

1As of this writing, a Google search for “ssh keys” turned up several decent tutorials; including any one of them here would
significantly increase the length of this already-tremendously-long manual.

22 CHAPTER 4. GETTING STARTED WITH LAM/MPI

If you have having problems withlamboot , try using the-d option to lamboot , which will print
enormous amounts of debugging output which can be helpful for determining what the problem is. Addi-
tionally, check thelamboot(1) man page as well as the LAM FAQ on the main LAM web site2 under the
section “Booting LAM” for more information.

4.4.3 Thelamnodes Command

An easy way to see how many nodes and CPUs are in the current LAM universe is with thelamnodes
command. For example, with the LAM universe that was created from the boot schema in Section4.4.1,
running thelamnodes command would result in the following output:� �
shell$ lamnodes
n0 node1.cluster.example.com:1:origin,thisnode
n1 node2.cluster.example.com:1:
n2 node3.cluster.example.com:2:
n3 node4.cluster.example.com:2:� �

The “n” number on the far left is the LAM node number. For example, “n3” uniquely refers tonode4 .
Also note the third column, which indicates how many CPUs are available for running processes on that
node. In this example, there are a total of 6 CPUs available for running processes. This information is from
the “cpu ” key that was used in the hostfile, and is helpful for running parallel processes (see below).

Finally, the “origin ” notation indicates which nodelamboot was executed from. “this node ”
obviously indicates which nodelamnodes is running on.

4.5 Compiling MPI Programs

Note that it isnotnecessary to have LAM booted to compile MPI programs.
Compiling MPI programs can be a complicated process:

• The same compilers should be used to compile/link user MPI programs as were used to compile LAM
itself.

• Depending on the specific installation configuration of LAM, a variety of-I , -L , and-l flags (and
possibly others) may be necessary to compile and/or link a user MPI program.

LAM/MPI provides “wrapper” compilers to hide all of this complexity. These wrapper compilers sim-
ply add the correct compiler/linker flags and then invoke the underlying compiler to actually perform the
compilation/link. As such, LAM’s wrapper compilers can be used just like “real” compilers.

The wrapper compilers are namedmpicc (for C programs),mpiCC andmpic++ (for C++ programs),
andmpif77 (for Fortran programs). For example:� �
shell$mpicc−g−c foo.c
shell$mpicc−g−c bar.c
shell$mpicc−g foo.o bar.o−o my mpi program� �

Note that no additional compiler and linker flags are required for correct MPI compilation or linking.
The resultingmy mpi program is ready to run in the LAM run-time environment. Similarly, the other
two wrapper compilers can be used to compile MPI programs for their respective languages:

2http://www.lam-mpi.org/faq/

http://www.lam-mpi.org/faq/

4.5. COMPILING MPI PROGRAMS 23

� �
shell$mpiCC−O c++ program.cc−o my c++ mpi program
shell$mpif77−O f77 program.f−o my f77 mpi program� �

Note, too, that any other compiler/linker flags can be passed through the wrapper compilers (such as-g
and-O); they will simply be passed to the back-end compiler.

Finally, note that giving the-showme option to any of the wrapper compilers will show both the name
of the back-end compiler that will be invoked, and also all the command line options that would have been
passed for a given compile command. For example (line breaks added to fit in the documentation):� �
shell$mpiCC−O c++ program.cc−o my c++ program−showme
g++−I/usr/local/lam/include−pthread−O c++ program.cc−o \
my c++ program−L/usr/local/lam/lib−llammpio−llammpi++−lpmpi \
−llamf77mpi−lmpi −llam−lutil −pthread� �
4.5.1 Sample MPI Program in C

The following is a simple “hello world” C program.� �
#include<stdio.h>
#include<mpi.h>

int main(int argc,char ∗argv[]) {
int rank, size;

MPI Init(&argc, &argv);
MPI Commrank(MPI COMM WORLD, &rank);
MPI Commsize(MPICOMM WORLD, &size);

printf(‘‘Hello, world! I am %d of %d\n’’, rank, size);

MPI Finalize();
return 0;

}� �
This program can be saved in a text file and compiled with thempicc wrapper compiler.� �

shell$mpicc hello.c−o hello� �
4.5.2 Sample MPI Program in C++

The following is a simple “hello world” C++ program.� �
#include<iostream>
#include<mpi.h>

using namespacestd;

int main(int argc,char ∗argv[]) {

24 CHAPTER 4. GETTING STARTED WITH LAM/MPI

int rank, size;

MPI::Init(argc, argv);
rank = MPI::COMM WORLD.Getrank();
size = MPI::COMMWORLD.Getsize();

cout<< ‘‘Hello, world! I am ’’ << rank<< ‘‘ of ’’ << size<< endl;

MPI::Finalize();
return 0;

}� �
This program can be saved in a text file and compiled with thempiCC wrapper compiler (ormpic++ if

on case-insensitive filesystems, such as Mac OS X’s HFS+).� �
shell$mpiCC hello.cc−o hello� �
4.5.3 Sample MPI Program in Fortran

The following is a simple “hello world” Fortran program.� �
program hello
include ’mpif.h’
integer rank,size, ierr

call MPI INIT(ierr)
call MPI COMM RANK(MPI COMM WORLD, rank, ierr)
call MPI COMM SIZE(MPI COMM WORLD, size, ierr)

print ∗, ”Hello, world! I am ”, rank, ” of ”, size

call MPI FINALIZE(ierr)
stop
end� �

This program can be saved in a text file and compiled with thempif77 wrapper compiler.� �
shell$mpif77 hello.f−o hello� �
4.6 Running MPI Programs

Once you have successfully established a LAM universe and compiled an MPI program, you can run MPI
programs in parallel.

In this section, we will show how to run a Single Program, Multiple Data (SPMD) program. Specifically,
we will run the hello program (from the previous section) in parallel. Thempirun and mpiexec
commands are used for launching parallel MPI programs, and thempitask commands can be used to
provide crude debugging support. Thelamclean command can be used to completely clean up a failed
MPI program (e.g., if an error occurs).

4.6. RUNNING MPI PROGRAMS 25

4.6.1 Thempirun Command

Thempirun command has many different options that can be used to control the execution of a program
in parallel. We’ll explain only a few of them here.

The simplest way to launch thehello program across all CPUs listed in the boot schema is:� �
shell$mpirun C hello� �

The C option means “launch one copy ofhello on every CPU that was listed in the boot schema.”
TheCnotation is therefore convenient shorthand notation for launching a set of processes across a group of
SMPs.

Another method for running in parallel is:� �
shell$mpirun N hello� �

TheNoption has a different meaning thanC– it means “launch one copy ofhello on every node in the
LAM universe.” Hence,Ndisregards the CPU count. This can be useful for multi-threaded MPI programs.

Finally, to run an absolute number of processes (regardless of how many CPUs or nodes are in the LAM
universe):� �
shell$mpirun−np 4 hello� �

This runs 4 copies ofhello . LAM will “schedule” how many copies ofhello will be run in a round-
robin fashion on each node by how many CPUs were listed in the boot schema file.3 For example, on the
LAM universe that we have previously shown in this tutorial, the following would be launched:

• 1 hello would be launched onn0 (namednode1)

• 1 hello would be launched onn1 (namednode2)

• 2 hello s would be launched onn2 (namednode3)

Note that any number can be used – if a number is used that is greater than how many CPUs are in
the LAM universe, LAM will “wrap around” and start scheduling starting with the first node again. For
example, using-np 10 would result in the following schedule:

• 2 hello s onn0 (1 from the first pass, and then a second from the “wrap around”)

• 2 hello s onn1 (1 from the first pass, and then a second from the “wrap around”)

• 4 hello s onn2 (2 from the first pass, and then 2 more from the “wrap around”)

• 2 hello s onn3

Thempirun(1) man page contains much more information andmpirun and the options available.
For example,mpirun also supports Multiple Program, Multiple Data (MPMD) programs, although it is not
discussed here. Also see Section7.12(page49) in this document.

3Note that the use of the word “schedule” does not imply that LAM has ties with the operating system for scheduling purposes
(it doesn’t). LAM “scheduled” on a per-node basis; so selecting a process to run means that it has been assigned and launched on
that node. The operating system is solely responsible for all process and kernel scheduling.

26 CHAPTER 4. GETTING STARTED WITH LAM/MPI

4.6.2 Thempiexec Command

The MPI-2 standard recommends the use ofmpiexec for portable MPI process startup. In LAM/MPI,
mpiexec is functionaly similar tompirun . Some options that are available tompirun are not available
to mpiexec , and vice-versa. The end result is typically the same, however – both will launch parallel MPI
programs; which you should use is likely simply a personal choice.

That being said,mpiexec offers more convenient access in three cases:

• Running MPMD programs

• Running heterogeneous programs

• Running “one-shot” MPI programs (i.e., boot LAM, run the program, then halt LAM)

The general syntax formpiexec is:� �
shell$mpiexec<global options> <cmd1> : <cmd2> : ...� �
Running MPMD Programs

For example, to run a manager/worker parallel program, where two different executables need to be launched
(i.e.,manager andworker , the following can be used:� �
shell$mpiexec−n 1 manager : worker� �

This runs one copy ofmanager and one copy ofworker for every CPU in the LAM universe.

Running Heterogeneous Programs

Since LAM is a heterogeneous MPI implementation, it supports running heterogeneous MPI programs. For
example, this allows running a parallel job that spans a Sun SPARC machine and an IA-32 Linux machine
(even though they are opposite endian machines). Although this can be somewhat complicated to setup
(remember that you will first need tolamboot successfully, which essentially means that LAM must be
correctly installed on both architectures), thempiexec command can be helpful in actually running the
resulting MPI job.

Note that you will need to have two MPI executables – one compiled for Solaris (e.g.,hello.solaris)
and one compiled for Linux (e.g.,hello.linux). Assuming that these executables both reside in the same
directory, and that directory is available on both nodes (or the executables can be found in thePATHon their
respective machines), the following command can be used:� �
shell$mpiexec−arch solaris hello.solaris :−arch linux hello.linux� �

This runs thehello.solaris command on all nodes in the LAM universe that have the string “so-
laris” anywhere in their architecture string, andhello.linux on all nodes that have “linux” in their ar-
chitecture string. The architecture string of a given LAM installation can be found by running thelaminfo
command.

4.7. SHUTTING DOWN THE LAM UNIVERSE 27

“One-Shot” MPI Programs

In some cases, it seems like extra work to boot a LAM universe, run a single MPI job, and then shut down
the universe. Batch jobs are good examples of this – since only one job is going to be run, why does it take
three commands?mpiexec provides a convenient way to run “one-shot” MPI jobs.� �
shell$mpiexec−machinefile hostfile hello� �

This will invoke lamboot with the boot schema named “hostfile ”, run the MPI programhello on
all available CPUs in the resulting universe, and then shut down the universe with thelamhalt command
(which we’ll discuss in Section4.7, below).

4.6.3 Thempitask Command

Thempitask command is analogous to the sequential Unix commandps . It shows the current status of the
MPI program(s) being executed in the LAM universe, and displays primitive information about what MPI
function each process is currently executing (if any). Note that in normal practice, thempimsg command
only gives a snapshot of what messages are flowing between MPI processes, and therefore is usually only
accurate at that single point in time. To really debug message passing traffic, use a tool such as message
passing analyzer (e.g., XMPI), or a parallel debugger (e.g., TotalView).

mpitask can be run from any node in the LAM universe.

4.6.4 Thelamclean Command

The lamclean command completely removed all running programs from the LAM universe. This can be
useful if a parallel job crashes and/or leaves state in the LAM run-time environment (e.g., MPI-2 published
names). It is usually run with no parameters:� �
shell$ lamclean� �

lamclean is typically only necessary when developing / debugging MPI applications – i.e., programs
that hang, messages that are left around, etc. Correct MPI programs should terminate properly, clean up all
their messages, unpublish MPI-2 names, etc.

4.7 Shutting Down the LAM Universe

When finished with the LAM universe, it should be shut down with thelamhalt command:� �
shell$ lamhalt� �

In most cases, this is sufficient to kill all running MPI processes and shut down the LAM universe.
However, in some rare conditions,lamhalt may fail. For example, if any of the nodes in the LAM

universe crashed before runninglamhalt , lamhalt will likely timeout and potentially not kill the entire
LAM universe. In this case, you will need to use thewipe command to guarantee that the LAM universe
has shut down properly:� �
shell$wipe−v hostfile� �
wherehostfile is the same boot schema that was used to boot LAM (i.e., all the same nodes are listed).
wipe will forcibly kill all LAM/MPI processes and terminate the LAM universe. This is a slower process
thanlamhalt , and is typically not necessary.

28 CHAPTER 4. GETTING STARTED WITH LAM/MPI

Chapter 5

Supported MPI Functionality

This chapter discusses the exact levels of MPI functionality that is supported by LAM/MPI.

5.1 MPI-1 Support

LAM 7.0.6 has support for all MPI-1 functionality.

5.1.1 Language Bindings

LAM provides C, C++, and Fortran 77 bindings for all MPI-1 functions, types, and constants. Profiling
support is available in all three languages (if LAM was configured and compiled with profiling support).
The laminfo command can be used to see if profiling support was included in LAM/MPI.

5.1.2 MPI CANCEL

MPI CANCEL works properly for receives, but will almost never work on sends.MPI CANCEL is most
frequently used with unmatchedMPI IRECV’s that were made “in case” a matching message arrived. This
simply entails removing the receive request from the local queue, and is fairly straightforward to implement.

Actually canceling a send operation is much more difficult because some meta information about a
message is usually sent immediately. As such, the message is usually at least partially sent before anMPI -
CANCEL is issued. Trying to chase down all the particular cases is a nightmare, to say the least.

As such, the LAM Team decided not to implementMPI CANCEL on sends, and instead concentrate on
other features.

But in true MPI Forum tradition, we would be happy to discuss any code that someone would like to
submit that fully implementsMPI CANCEL.

5.2 MPI-2 Support

LAM 7.0.6 has support for many MPI-2 features. The main chapters of the MPI-2 standard are listed below,
along with a summary of the support provided for each chapter.

5.2.1 Miscellany

Portable MPI Process Startup. Thempiexec command is now supported. Common examples include:

29

30 CHAPTER 5. SUPPORTED MPI FUNCTIONALITY

� �
Runs 4 copes of the MPI program mympi program
shell$mpiexec−n 4 my mpi program

Runs mylinux program on all available Linux machines, and runs
mysolaris program on all available Solaris machines
shell$mpiexec−arch linux mylinux program :−arch solaris mysolarisprogram

Boot the LAM run−time environment, run mympi program on all
available CPUs, and then shut down the LAM run−time environment.
shell$mpiexec−machinefile hostfile mympi program� �

See thempiexec(1) man page for more details on supported options as well as more examples.

PassingNULL to MPI INIT. PassingNULL as both arguments toMPI INIT is fully supported.

Version Number. LAM 7.0.6 reports its MPI version as 1.2 through the functionMPI GET VERSION.

Datatype ConstructorMPI TYPE CREATE INDEXED BLOCK . The MPI functionMPI TYPE CREATE -
INDEXED BLOCK is not supported by LAM/MPI.

Treatment of MPI Status . Although LAM supports the constantsMPI STATUS IGNORE andMPI -
STATUSES IGNORE, the functionMPI REQUEST GET STATUS is not provided.

Error class for invalid keyval. The error class for invalid keyvals,MPI ERR KEYVAL, is fully sup-
ported.

Committing committed datatype. Committing a committed datatype is fully supported; its end effect is
a no-op.

Allowing user functions at process termination. Attaching attributes toMPI COMM SELF that have
user-specified delete functions will now trigger these functions to be invoked as the first phase ofMPI -
FINALIZE. When these functions are run, MPI is still otherwise fully functional.

Determining whether MPI has finished. The functionMPI FINALIZED is fully supported.

The Info object. Full support forMPI Info objects is provided. See Table5.1.

Supported Functions

MPI INFO CREATE MPI INFO FREE MPI INFO GET NTHKEY
MPI INFO DELETE MPI INFO GET MPI INFO GET VALUELEN
MPI INFO DUP MPI INFO GET NKEYS MPI INFO SET

Table 5.1: Supported MPI-2 info functions.

5.2. MPI-2 SUPPORT 31

Memory allocation. TheMPI ALLOC MEM andMPI FREE MEM functions will return “special” mem-
ory that enable fast memory passing in RPIs that support it. These functions are simply wrappers to
malloc() and free() (respectively) in RPI modules that do not take advantage of “special” memory.
These functions can be used portably for potential performance gains.

Language interoperability. Inter-language interoperability is supported. It is possible to initialize LAM/MPI
from either C or Fortran and mix MPI calls from both languages. Handle conversions for inter-language in-
teroperability are fully supported. See Table5.2.

Supported Functions

MPI COMM F2C MPI COMM C2F
MPI GROUP F2C MPI GROUP C2F
MPI TYPE F2C MPI TYPE C2F
MPI REQUEST F2C MPI REQUEST C2F
MPI INFO F2C MPI INFO C2F
MPI WIN F2C MPI WIN C2F
MPI STATUS F2C MPI STATUS C2F

Table 5.2: Supported MPI-2 handle conversion functions.

Error handlers. Communicator and window error handler functions are fully supported; this functionality
is not yet supported forMPI File handles. See Table5.3

Supported Functions

MPI COMM CREATE ERRHANDLER MPI WIN CREATE ERRHANDLER
MPI COMM GET ERRHANDLER MPI WIN GET ERRHANDLER
MPI COMM SET ERRHANDLER MPI WIN SET ERRHANDLER

Table 5.3: Supported MPI-2 error handler functions.

New datatype manipulation functions. Several new datatype manipulation functions are provided. Ta-
ble5.4 lists the new functions.

Supported Functions

MPI GET ADDRESS MPI TYPE CREATE SUBARRAY
MPI TYPE CREATE DARRAY MPI TYPE CREATE STRUCT
MPI TYPE CREATE HINDEXED MPI TYPE GET EXTENT
MPI TYPE CREATE HVECTOR MPI TYPE GET TRUE EXTENT
MPI TYPE CREATE RESIZED

Table 5.4: Supported MPI-2 new datatype manipulation functions.

New predefined datatypes. Support has been added for theMPI LONG LONG INT, MPI UNSIGNED -
LONG LONG andMPI WCHAR basic datatypes.

32 CHAPTER 5. SUPPORTED MPI FUNCTIONALITY

Canonical MPI PACK , MPI UNPACK . Support is not provided forMPI PACK EXTERNAL, MPI -
UNPACK EXTERNAL, or MPI PACK EXTERNAL SIZE.

5.2.2 Process Creation and Management

LAM/MPI supports all MPI-2 dynamic process management. Table5.5 lists all the supported functions.

Supported Functions

MPI CLOSE PORT MPI COMM GET PARENT MPI LOOKUP NAME
MPI COMM ACCEPT MPI COMM JOIN MPI OPEN PORT
MPI COMM SPAWN MPI COMM CONNECT MPI PUBLISH NAME
MPI COMM DISCONNECT MPI COMM SPAWN MULTIPLE MPI UNPUBLISH NAME

Table 5.5: Supported MPI-2 dynamic functions.

As requested by LAM users,MPI COMM SPAWN andMPI COMM SPAWN MULTIPLE supports
someMPI Info keys for spawning MPMD applications and for more fine-grained control about where chil-
dren processes are spawned. See theMPI Commspawn(3) man page for more details.

These functions supersede theMPIL COMM SPAWN function that LAM/MPI introduced in version
6.2b. Hence,MPIL COMM SPAWN is no longer available.

5.2.3 One-Sided Communication

Support is provided for get/put/accumulate data transfer operations and for the post/wait/start/complete and
fence synchronization operations. No support is provided for window locking.

The datatypes used in the get/put/accumulate operations are restricted to being basic datatypes or single
level contiguous/vectors of basic datatypes.

The implementation of the one-sided operations is layered on top of the point-to-point functions, and
will thus perform no better than them. Nevertheless it is hoped that providing this support will aid developers
in developing and debugging codes using one-sided communication.

Table5.6 lists the functions related to one-sided communication that have been implemented.

Supported Functions

MPI ACCUMULATE MPI WIN CREATE MPI WIN POST
MPI GET MPI WIN FENCE MPI WIN START
MPI PUT MPI WIN FREE MPI WIN WAIT
MPI WIN COMPLETE MPI WIN GET GROUP

Table 5.6: Supported MPI-2 one-sided functions.

5.2.4 Extended Collective Operations

LAM 7.0.6 does not currently support MPI collective operations on intercommunicators. LAM also does
not support the new collective operationsMPI EXSCAN or MPI ALLTOALLW.

The “coll” System Services Interface (SSI) component type provides a framework to implement such
algorithms; developers should see Section9.3(page72) for details.

5.2. MPI-2 SUPPORT 33

5.2.5 External Interfaces

The external interfaces chapter lists several different major topics. LAM’s support for these topics is sum-
marized in Table5.7, and the exact list of functions that are supported is listed in5.8.

Supported Description

no Generalized requests
no Associating information withMPI Status
yes Naming objects
no Error classes
no Error codes
yes Error handlers
yes Decoding a datatype
yes MPI and threads
yes New attribute caching functions
yes Duplicating a datatype

Table 5.7: Major topics in the MPI-2 chapter “External Interfaces”, and LAM’s level of support.

Supported Functions

MPI COMM SET NAME MPI TYPE SET NAME MPI WIN SET NAME
MPI COMM GET NAME MPI TYPE GET NAME MPI WIN GET NAME

MPI COMM CREATE ERRHANDLER MPI WIN CREATE ERRHANDLER
MPI COMM GET ERRHANDLER MPI WIN GET ERRHANDLER
MPI COMM SET ERRHANDLER MPI WIN SET ERRHANDLER

MPI TYPE GET CONTENTS MPI INIT THREAD
MPI TYPE GET ENVELOPE MPI QUERY THREAD
MPI TYPE GET EXTENT MPI IS THREAD MAIN
MPI TYPE GET TRUE EXTENT MPI TYPE DUP

MPI COMM CREATE KEYVAL MPI TYPE CREATE KEYVAL MPI WIN CREATE KEYVAL
MPI COMM FREE KEYVAL MPI TYPE FREE KEYVAL MPI WIN FREE KEYVAL
MPI COMM DELETE ATTR MPI TYPE DELETE ATTR MPI WIN DELETE ATTR
MPI COMM GET ATTR MPI TYPE GET ATTR MPI WIN GET ATTR
MPI COMM SET ATTR MPI TYPE SET ATTR MPI WIN SET ATTR

Table 5.8: Supported MPI-2 external interface functions, grouped by function.

5.2.6 I/O

MPI-IO support is provided by including the ROMIO package from Argonne National Labs,1 version
1.2.5.1. The LAM wrapper compilers (mpicc , mpiCC/mpic++ , andmpif77) will automatically pro-
vide all the necessary flags to compile and link programs that use ROMIO function calls.

Although the ROMIO group at Argonne has included support for LAM in their package, there are still
a small number of things that the LAM Team had to do to make ROMIO compile and install properly with

1http://www.mcs.anl.gov/romio/

http://www.mcs.anl.gov/romio/

34 CHAPTER 5. SUPPORTED MPI FUNCTIONALITY

LAM/MPI. As such, if you try to install the ROMIO package manually with LAM/MPI, you will experience
some difficulties.

There are some important limitations to ROMIO that are discussed in theromio/README file. One
limitation that is not currently listed in the ROMIO README file is that atomic file access will not work
with AFS. This is because of file locking problems with AFS (i.e., AFS iteself does not support file locking).
The ROMIO test programatomicity will fail if you specify an output file on AFS.

Additionally, ROMIO does not support the following LAM functionality:

• LAM MPI-2 datatypes cannot be used with ROMIO; ROMIO makes the fundamental assumption that
MPI-2 datatypes are built upon MPI-1 datatypes. LAM builds MPI-2 datatypes natively – ROMIO
cannot presently handle this case.

This will hopefully be fixed in some future release of ROMIO. The ROMIO test programscoll -
test , fcoll test , large array , andcoll perf will fail because they use the MPI-2 datatype
MPI DARRAY.

Please see the sections “ROMIO Users Mailing List” and “Reporting Bugs” inromio/README for
how to submit questions and bug reports about ROMIO (that do not specifically pertain to LAM).

5.2.7 Language Bindings

LAM provides C, C++, and Fortran 77 bindings for all supported MPI-2 functions, types, and constants.
LAM does not provide a Fortran 90 module. However, it is possible to use the Fortran 77 bindings with a
Fortran 90 compiler by specifying the F90 compiler as your Fortran compiler when configuring/compiling
LAM/MPI. See the LAM Installation Guide [14] for more details.

The C++ bindings include support for the C++ onlyMPI::BOOL, MPI::COMPLEX, MPI::DOUBLE -
COMPLEX, andMPI::LONG DOUBLE COMPLEX datatypes.

Note that there are some issues with using MPI and Fortran 90 together. See the F90 / C++ chapter in
the MPI-2 standard [2] for more information on using MPI with Fortran 90.

As mentioned in Section5.1.1, profiling support is available in all three languages (if LAM was compiled
with profiling support). Thelaminfo command can be used to see if profiling support was included in
LAM/MPI.

Chapter 6

System Services Interface (SSI) Overview

The System Services Interface (SSI) makes up the core of LAM/MPI. It influences how many commands
and MPI processes are executed. This chapter provides an overview of what SSI is and what users need to
know about how to use it to maximize performance of MPI applications.

6.1 Types and Modules

SSI provides a component framework for the LAM run-time environment (RTE) and the MPI communica-
tions layer. Components are selected from each type at run-time and used to effect the LAM RTE and MPI
library.

There are currently four types of components used by LAM/MPI:1

• boot: Starting the LAM run-time environment, used mainly with thelamboot command.

• coll: MPI collective communications, only used within MPI processes.

• cr: Checkpoint/restart functionality, used both within LAM commands and MPI processes.

• rpi: MPI point-to-point communications, only used within MPI processes.

The LAM/MPI distribution includes instances of each component type referred to as modules. Each
module is an implementation of the component type which can be selected and used at run-time to provide
services to the LAM RTE and MPI communications layer. Chapters8 and 9 list the modules that are
available in the LAM/MPI distribution.

6.2 Terminology

Available The term “available” is used to describe a module that reports (at run-time) that it is able to run
in the current environment. For example, an RPI module may check to see if supporting network
hardware is present before reporting that it is available or not.

Chapters8 and 9 list the modules that are included in the LAM/MPI distribution, and detail the
requirements for each of them to indicate whether they are available or not.

SelectedThe term “selected” means that a module has been chosen to be used at run-time. Depending on
the module type, zero or more modules may be selected.

1More component types are expected to be added to LAM/MPI over time.

35

36 CHAPTER 6. SYSTEM SERVICES INTERFACE (SSI) OVERVIEW

Scope Each module selection has a scope depending on the type of the module. “Scope” refers to the
duration of the module’s selection. Table6.1 lists the scopes for each module type.

Type Scope description

boot A module is selected at the beginning oflamboot (or recon)
and is used for the duration of the LAM universe.

coll A module is selected every time an MPI communicator is created
(includingMPI COMM WORLD andMPI COMM SELF). It re-
mains in use until that communicator has been freed.

cr Checkpoint/restart modules are selected at the beginning of an
MPI job and remain in use until the job completes.

rpi RPI modules are selected duringMPI INIT and remain in use until
MPI FINALIZE returns.

Table 6.1: SSI module types and their corresponding scopes.

6.3 SSI Parameters

One of the founding principles of SSI is to allow the passing of run-time parameters through the SSI frame-
work. This allows both the selection of which modules will be used at run-time (by passing parameters to
the SSI framework itself) as well as tuning run-time performance of individual modules (by passing param-
eters to each module). Although the specific usage of each SSI module parameter is defined by either the
framework or the module that it is passed to, the value of most parameters will be resolved by the following:

1. If a valid value is provided via a run-time SSI parameter, use that.

2. Otherwise, attempt to calculate a meaningful value at run-time or use a compiled-in default value.2

As such, it is typically possible to set a parameter’s default value when LAM is configured/compiled,
but use a different value at run time.

6.3.1 Naming Conventions

SSI parameter names are generally strings containing only letters and underscores, and can typically be
broken down into three parts. For example, the parameterboot rsh agent can be broken into its three
components:

• SSI module type: The first string of the name. In this case, it isboot .

• SSI module name: The second string of the name, corresponding to a specific SSI module. In this
case, it isrsh .

• Parameter name: The last string in the name. It may be an arbitrary string, and include multiple
underscores. In this case, it isagent .

2Note that many SSI modules provide configure flags to set compile-time defaults for “tweakable” parameters. See [14].

6.3. SSI PARAMETERS 37

Although the parameter name is technically only the last part of the string, it is only proper to refer to
it within its overall context. Hence, it is correct to say “theboot rsh agent parameter” as well as “the
agent parameter to thersh boot module”.

Note that the reserved stringbase may appear as a module name, referring to the fact that the parameter
applies to all modules of a give type.

6.3.2 Setting Parameter Values

SSI parameters each have a unique name and can take a single string value. The parameter/value pairs can
be passed by multiple different mechanisms. Depending on the target module and the specific parameter,
mechanisms may include:

• Using command line flags when LAM was configured.

• Setting environment variables before invoking LAM commands.

• Using the-ssi command line switch to various LAM commands.

• Setting attributes on MPI communicators.

Users are most likely to utilize the latter three methods. Each is described in detail, below. Listings and
explanations of available SSI parameters are provided in Chapters8 and9 (pages55 and63, respectively),
categorized by SSI type and module.

Environment Variables

SSI parameters can be passed via environment variables prefixed withLAMMPI SSI . For example, se-
lecting which RPI module to use in an MPI job can be accomplished by setting the environment variable
LAMMPI SSI rpi to a valid RPI module name (e.g.,tcp).

Note that environment variables must be setbeforeinvoking the corresponding LAM/MPI commands
that will use them.

-ssi Command Line Switch

LAM/MPI commands that interact with SSI modules accept the-ssi command line switch. This switch
expects two parameters to follow: the name of the SSI parameter and its corresponding value. For example:� �
shell$mpirun C−ssi rpi tcp mympi program� �
runs themy mpi program on all available CPUs in the LAM universe using thetcp RPI module.

Communicator Attributes

Some SSI types accept SSI parameters via MPI communicator attributes (notably the MPI collective com-
munication modules). These parameters follow the same rules and restrictions as normal MPI attributes.
Note that for portability between 32 and 64 bit systems, care should be taken when setting and getting
attribute values. The following is an example of portable attribute C code:� �
int flag, attributeval;
void ∗setattribute;
void ∗∗get attribute;

38 CHAPTER 6. SYSTEM SERVICES INTERFACE (SSI) OVERVIEW

MPI Comm comm = MPICOMM WORLD;
int keyval = LAM MPI SSI COLL BASE ASSOCIATIVE;

/∗ Set the value∗/
setattribute = (void ∗) 1;
MPI Commsetattr(comm, keyval, &setattribute);

/∗ Get the value∗/
get attribute = NULL;
MPI Commget attr(comm, keyval, &getattribute, &flag);
if (flag == 1){

attributeval = (int) ∗get attribute;
printf(‘‘Got the attribute value: %d\n’’, attribute val);

}� �
Specifically, the following code is neither correct nor portable:� �

int flag, attributeval;
MPI Comm comm = MPICOMM WORLD;
int keyval = LAM MPI SSI COLL BASE ASSOCIATIVE;

/∗ Set the value∗/
attributeval = 1;
MPI Commsetattr(comm, keyval, &attributeval);

/∗ Get the value∗/
attributeval =−1;
MPI Commget attr(comm, keyval, &attributeval, &flag);
if (flag == 1)

printf(‘‘Got the attribute value: %d\n’’, attribute val);� �
6.4 Selecting Modules

As implied by the previous sections, modules are selected at run-time either by examining (in order) user-
specified parameters, run-time calculations, and compiled-in defaults. The selection process involves a
flexible negotitation phase which can be both tweaked and arbitrarily overriden by the user and system
administrator.

6.4.1 Specifying Modules

Each SSI type has an implicit SSI parameter corresponding to the type name indicating which module(s)
to be considered for selection. For example, to specify in that thetcp RPI module should be used, the SSI
parameterrpi should be set to the valuetcp . For example:� �
shell$mpirun C−ssi rpi tcp mympi program� �

The same is true for the other SSI types (boot, cr, andcoll), with the exception that thecoll type can be
used to specify a comma-separated list of modules to be considered as each MPI communicator is created

6.4. SELECTING MODULES 39

(includingMPI COMM WORLD). For example:� �
shell$mpirun C−ssi coll smp,lambasic mympi program� �
indicates that thesmp and lam basic modules will potentially both be considered for selection for each
MPI communicator.

6.4.2 Setting Priorities

Although typically not useful to individual users, system administrators may use priorities to set system-
wide defaults that influence the module selection process in LAM/MPI jobs.

Each module has an associated priority which plays role in whether a module is selected or not. Specif-
ically, if one or more modules of a given type are available for selection, the modules’ priorities will be at
least one of the factors used to determine which module will finally be selected. Priorities are in the range
[−1, 100], with −1 indicating that the module should not be considered for selection, and100 being the
highest priority. Ties will be broken arbitrarily by the SSI framework.

A module’s priorty can be set run-time through the normal SSI parameter mechanisms (i.e., environment
variables or using the-ssi parameter). Every module has an implicit priority SSI parameter in the form
<type > <module name > priority .

For example, a system administrator may set environment variables in system-wide shell setup files (e.g.,
/etc/profile , /etc/bashrc , or /etc/csh.cshrc) to change the default priorities.

6.4.3 Selection Algorithm

For each component type, the following general selection algorithm is used:

• A list of all available modules is created. If the user specified one or more modules for this type, only
those modules are queried to see if they are available. Otherwise, all modules are queried.

• The module with the highest priority (and potentially meeting other selection criteria, depending on
the module’s type) will be selected.

Each SSI type may define its own additional selection rules. For example, the selection ofcoll, cr, and
rpi modules may be inter-dependant, and depend on the supported MPI thread level. Chapter9 (page63)
details the selection algorithm for MPI SSI modules.

40 CHAPTER 6. SYSTEM SERVICES INTERFACE (SSI) OVERVIEW

Chapter 7

LAM/MPI Command Quick Reference

This section is intended to provide a quick reference of the major LAM/MPI commands. Each command
also has its own manual page which typically provides more detail than this document.

7.1 Thelamboot Command

The lamboot command is used to start the LAM run-time environment (RTE).lamboot is typically the
first command used before any other LAM/MPI command (notable exceptions are the wrapper compilers,
which do not require the LAM RTE, andmpiexec which can launch its own LAM universe).lamboot
can use any of the availableboot SSI modules; Section8.1details the requirements and operations of each
of theboot SSI modules that are included in the LAM/MPI distribution.

Common arguments that are used with thelamboot command are:

• -b : When used with thersh boot module, the “fast” boot algorithm is used which can noticeably
speed up the execution time oflamboot . It can also be used where remote shell agents cannot
provide output from remote nodes (e.g., in a Condor environment). Specifically, the “fast” algorithm
assumes that the user’s shell on the remote node is the same as the shell on the node wherelamboot
was invoked.

• -d : Print debugging output. This will print alot of output, and is typically only necessary iflamboot
fails for an unknown reason. The output is forwarded to standard out as well as either/tmp or syslog
facilities. The amount of data produced can fill these filesystems, leading to general system problems.

• -l : Use local hostname resolution instead of centralized lookups. This is useful in environments
where the same hostname may resolve to different IP addresses on different nodes (e.g., clusters
based on Finite Neighborhood Networks1).

• -s : Close thestdout andstderr of the locally-launched LAM daemon (they are normally left
open). This is necessary when invokinglamboot via a remote agent such asrsh or ssh .

• -v : Print verbose output. This is useful to show progress duringlamboot ’s progress. Unlike-d ,
-v does not forward output to a file or syslog.

• -x : Run the LAM RTE in fault-tolerant mode.

1Seehttp://www.aggregate.org/ for more details.

41

http://www.aggregate.org/

42 CHAPTER 7. LAM/MPI COMMAND QUICK REFERENCE

• <filename >: The name of the boot schema file. Boot schemas, while they can be as simple as a
list of hostnames, can contain additional information and are discussed in detail in Sections4.4.1and
8.1.1, pages20and55, respectively.

Booting the LAM RTE is where most users (particularly first-time users) encounter problems. Each
boot module has its own specific requirements and prerequisites for success. Althoughlamboot typically
prints detailed messages when errors occur, users are strongly encouraged to read Section8.1for the details
of theboot module that they will be using. Additionally, the-d switch should be used to examine exactly
what is happening to determine the actual source of the problem – many problems withlamboot come
from the operating system or the user’s shell setup; not from within LAM itself.

The most commonlamboot example simply uses a hostfile to launch across anrsh /ssh -based cluster
of nodes (the “-ssi boot rsh ” is not technically necessary here, but it is specified to make this example
correct in all environments):� �
shell$ lamboot−v −ssi boot rsh hostfile

LAM 7.0/MPI 2 C++/ROMIO− Indiana University

n0<1234> ssi:boot:base:linear: booting n0 (node1.cluster.example.com)
n0<1234> ssi:boot:base:linear: booting n1 (node2.cluster.example.com)
n0<1234> ssi:boot:base:linear: booting n2 (node3.cluster.example.com)
n0<1234> ssi:boot:base:linear: booting n3 (node4.cluster.example.com)
n0<1234> ssi:boot:base:linear: finished� �
7.1.1 Multiple Sessions on the Same Node

In some cases (such as in batch-regulated environments), it is desirable to allow multiple universes owned
by the same on the same node. TheTMPDIR, LAMMPI SESSIONPREFIX , andLAMMPI SESSION-
SUFFIX environment variables can be used to effect this behavior. The main issue is the location of
LAM’s session directory; each node in a LAM universe has a session directory in a well-known location in
the filesystem that identifies how to contact the LAM daemon on that node. Multiple LAM universes can
simultaneously co-exist on the same node as long as they have different session directories.

LAM recognizes several batch environments and automatically adapts the session directory to be specific
to a batch job. Hence, if the batch scheduler allocates multiple jobs from the same user to the same node,
LAM will automatically do the “right thing” and ensure that the LAM universes from each job will not
collide. Sections12.7and12.8(starting on page94) discuss these issues in detail.

7.1.2 Avoiding Running on Specific Nodes

Once the LAM universe is booted, processes can be launched on any node. Thempirun , mpiexec ,
and lamexec commands are most commonly used to launch jobs in the universe, and are typically used
with the N andC nomenclatures (see the description ofmpirun in Section7.12 for details on theN and
C nomenclature) which launch jobs on all schedulable nodes and CPUs in the LAM universe, respectively.
While finer-grained controls are available throughmpirun (etc.), it can be convenient to simply mark some
nodes as “non-schedulable,” and therefore avoid havingmpirun (etc.) launch executables on those nodes
when usingNandCnomenclature.

For example, it may be convenient to boot a LAM universe that includes a controller node (e.g., a
desktop workstation) and a set of worker nodes. In this case, it is desirable to mark the desktop workstation

7.2. THE LAMCLEANCOMMAND 43

as “non-scheduable” so that LAM will not launch executables there (by default). Consider the following
boot schema:� �
Mark myworkstation as ‘‘non−schedulable’’
my workstation.office.example.com schedule=no
All the other nodes are, by default, schedulable
node1.cluster.example.com
node2.cluster.example.com
node3.cluster.example.com
node4.cluster.example.com� �

Booting with this schema allows the convenienve of:� �
shell$mpirun C mympi program� �
which will only run my mpi program on the four cluster nodes (i.e., not the workstation). Note that this
behavioronly applies to theC andN designations; LAM will always allow execution on any node when
using thenX or cX notation:� �
shell$mpirun c0 C mympi program� �
which will run my mpi program on all five nodes in the LAM universe.

7.2 Thelamclean Command

The lamclean command is provided to clean up the LAM universe. It is typically only necessary when
MPI processes terminate “badly,” and potentially leave resources allocated in the LAM universe (such as
MPI-2 published names, processes, or shared memory). Thelamclean command will kill all processes
running in the LAM universe, and freeall resources that were associated with them (including unpublishing
MPI-2 dynamicly published names).

7.3 Thelamexec Command

The lamexec command is similar tompirun but is used for non-MPI programs. For example:� �
shell$ lamexec N uptime

5:37pm up 21 days, 23:49, 5 users, load average: 0.31, 0.26, 0.25
5:37pm up 21 days, 23:49, 2 users, load average: 0.01, 0.00, 0.00
5:37pm up 21 days, 23:50, 3 users, load average: 0.01, 0.00, 0.00
5:37pm up 21 days, 23:50, 2 users, load average: 0.87, 0.81, 0.80� �

Most of the parameters and options that are available tompirun are also available tolamexec . See
thempirun description in Section7.12for more details.

7.4 Thelamgrow Command

The lamgrow command adds a single node to the LAM universe. It must use the sameboot module that
was used to initially boot the LAM universe.lamgrow must be run from a node already in the LAM
universe. Common parameters include:

44 CHAPTER 7. LAM/MPI COMMAND QUICK REFERENCE

• -v : Verbose mode.

• -d : Debug mode; enables alot of diagnostic output.

• -n <nodeid >: Assign the new host the node IDnodeid . nodeid must be an unused node ID.
If -n is not specified, LAM will find the lowest node ID that is not being used.

• -no-schedule : Has the same effect as putting “no schedule=yes ” in the boot schema. This
means that theCandNexpansion used inmpirun andlamexec will not include this node.

• -ssi <key > <value >: Pass in SSI parameterkey with the valuevalue .

• <hostname >: The name of the host to expand the universe to.

For example, the following adds the nodeblinky to the existing LAM universe using thersh boot
module:� �
shell$ lamgrow−ssi boot rsh blinky.cluster.example.com� �

Note that lamgrow cannot grow a LAM universe that only contains one node that has an IP ad-
dress of 127.0.0.1 (e.g., iflamboot was run with the default boot schema that only contains the name
localhost). In this case,lamgrow will print an error and abort without adding the new node.

7.5 Thelamhalt Command

The lamhalt command is used to shut down the LAM RTE. Typically,lamhalt can simply be run with
no command line parameters and it will shut down the LAM RTE. Optionally, the-v or -d arguments can
be used to makelamhalt be verbose or extremely verbose, respectively.

There are a small number of cases wherelamhalt will fail. For example, if a LAM daemon becomes
unresponsive (e.g., the daemon was killed),lamhalt may fail to shut down the entire LAM universe. It
will eventually timeout and therefore complete in finite time, but you may want to use the last-resortwipe
command (see Section7.16).

7.6 Thelaminfo Command

The laminfo command can be used to query the capabilities of the LAM/MPI installation. Running
laminfo with no parameters shows a prettyprint summary of information. Using the-parsable com-
mand line switch shows the same summary information, but in a format that should be relatively easy to
parse with common unix tools such asgrep , cut , awk, etc.

laminfo supports a variety of command line options to query for specific information. The-h option
shows a complete listing of all options. Some of the most common options include:

• -arch : Show the architecture that LAM was configured for.

• -path : Paired with a second argument, display various paths relevant to the LAM/MPI installation.
Valid second arguments include:

– prefix : Main installation prefix

– bindir : Where the LAM/MPI executables are located

7.6. THE LAMINFOCOMMAND 45

– libdir : Where the LAM/MPI libraries are located

– incdir : Where the LAM/MPI include files are located

– pkglibdir : Where dynamic SSI modules are installed2

– sysconfdir : Where the LAM/MPI help files are located

• -version : Paired with two addition options, display the version of either LAM/MPI or one or
more SSI modules. The first argument identifies what to report the version of, and can be any of the
following:

– lam : Version of LAM/MPI

– boot : Version of all boot modules

– boot:module : Version of a specific boot module

– coll : Version of all coll modules

– coll:module : Version of a specific coll module

– cr : Version of all cr modules

– cr:module : Version of a specific cr module

– rpi : Version of all rpi modules

– rpi:module : Version of a specific rpi module

The second argument specifies the scope of the version number to display – whether to show the entire
version number string, or just one component of it:

– full : Display the entire version number string

– major : Display the major version number

– minor : Display the minor version number

– release : Display the release version number

– alpha : Display the alpha version number

– beta : Display the beta version number

– cvs : Display the CVS version number3

Multiple options can be combined to query several attributes at once:� �
shell$ laminfo−parsable−arch−version lam major−version rpi tcp full
version:lam:7
ssi:boot:rsh:version:ssi:1.0
ssi:boot:rsh:version:api:1.0
ssi:boot:rsh:version:module:7.0
arch:i686−pc−linux−gnu� �

Note that three version numbers are returned for thetcp module. The first (ssi) indicates the overall
SSI version that the module conforms to, the second (api) indicates what version of therpi API the module
conforms to, and the last (module) indicates the version of the module itself.

2Dynamic SSI modules are not supported in LAM/MPI 7.0, but will be supported in future versions.
3The value will either be 0 (not built from CVS), 1 (built from a cvs checkout) or a date encoded in the form YYYYMMDD

(built from a nightly tarball on the given date)

46 CHAPTER 7. LAM/MPI COMMAND QUICK REFERENCE

7.7 Thelamnodes Command

LAM was specifically designed to abstract away hostnames oncelamboot has completed successfully.
However, for various reasons (usually related to system-administration concerns, and/or for creating human-
readable reports), it can be desirable to retrieve the hostnames of LAM nodes long afterlamboot .

The commandlamnodes can be used for this purpose. It accepts both theN and C syntax from
mpirun , and will return the corresponding names of the specified nodes. For example:� �
shell$ lamnodes N� �
will return the node that each CPU is located on, the hostname of that node, the total number of CPUs on
each, and any flags that are set on that node. Specific nodes can also be queried:� �
shell$ lamnodes n0,3� �
will return the node, hostname, number of CPUs, and flags on n0 and n3.

Command line arguments can be used to customize the output oflamnodes . These include:

• -c : Suppress printing CPU counts

• -i : Print IP addresses instead of IP names

• -n : Suppress printing LAM node IDs

7.8 Thelamshrink Command

The lamshrink command is used to remove a node from a LAM universe:� �
shell$ lamshrink n3� �
removes node n3 from the LAM universe. Note that all nodes with ID’s greater than 3 will not have their
ID’s reduced by one – n3 simply becomes an empty slot in the LAM universe.mpirun andlamexec will
still function correctly, even when used withC andN notation – they will simply skip the n3 since there is
no longer an operational node in that slot.

Note that thelamgrow command can optionally be used to fill the empty slot with a new node.

7.9 Thempicc , mpiCC / mpic++ , and mpif77 Commands

Compiling MPI applications can be a complicated process because the list of compiler and linker flags
required to successfully compile and link a LAM/MPI application not only can be quite long, it can change
depending on the particular configuration that LAM was installed with. For example, if LAM includes
native support for Myrinet hardware, the-lgm flag needs to be used when linking MPI executables.

To hide all this complexity, “wrapper” compilers are provided that handle all of this automatically. They
are called “wrapper” compilers because all they do is add relevant compiler and linker flags to the command
line before invoking the real back-end compiler to actually perform the compile/link. Most command line
arugments are passed straight through to the back-end compiler without modification.

Therefore, to compile an MPI application, use the wrapper compilers exactly as you would use the real
compiler. For example:

7.10. THE MPIEXECCOMMAND 47

� �
shell$mpicc−O−c main.c
shell$mpicc−O−c foo.c
shell$mpicc−O−c bar.c
shell$mpicc−O−o main main.o foo.o bar.o� �

This compiles three C source code files and links them together into a single executable. No additional
-I , -L , or -l arguments are required.

The main exceptions to what flags are not passed through to the back-end compiler are:

• -showme : Used to show what the wrapper compiler would have executed. This is useful to see the
full compile/link line would have been executed. For example (your output may differ from what is
shown below, depending on your installed LAM/MPI configuration):� �
shell$mpicc−O−c main.c−showme
gcc−I/usr/local/lam/include−pthread−O−c foo.c� �� �
The output line shown below is word wrapped in order to fit nicely in the document margins
shell$mpicc−O−o main main.o foo.o bar.o−showme
gcc−I/usr/local/lam/include−pthread−O−o main main.o foo.o bar.o\
−L/usr/local/lam/lib−llammpio−lpmpi−llamf77mpi−lmpi −llam−lutil \
−pthread� �

• -lpmpi : When compiling a user MPI application, the-lpmpi argument is used to indicate that
MPI profiling support should be included. The wrapper compiler may alter the exact placement of
this argument to ensure that proper linker dependency semantics are preserved.

It is stronglyrecommended to use the wrapper compilers for all compiling and linking of MPI applica-
tions.

7.9.1 Deprecated Names

Previous versions of LAM/MPI used the nameshcc , hcp , andhf77 for the wrapper compilers. While
these command names still work (they are simply symbolic links to the real wrapper compilersmpicc ,
mpiCC/mpic++ , andmpif77 , respectively), their use is deprecated.

7.10 Thempiexec Command

The mpiexec command is used to launch MPI programs. It is similar to, but slightly different than,
mpirun .4 Althoughmpiexec is simply a wrapper around other LAM commands (includinglamboot ,
mpirun , andlamhalt), it ties their functionality together and provides a unified interface for launching
MPI processes. Specifically,mpiexec offers two features from command line flags that require multiple
steps when using other LAM commands: launching MPMD MPI processes and launching MPI processes
when there is no existing LAM universe.

4The reason that there are two methods to launch MPI executables is because the MPI-2 standard suggests the use ofmpiexec
and provides standardized command line arguments. Hence, even though LAM already had anmpirun command to launch MPI
executables,mpiexec was added to comply with the standard.

48 CHAPTER 7. LAM/MPI COMMAND QUICK REFERENCE

7.10.1 General Syntax

The general form ofmpiexec commands is:� �
mpiexec [globalargs] localargs1 [: localargs2 [...]]� �

Global arguments are applied to all MPI processes that are launched. They must be specified before any
local arguments. Common global arguments include:

• -boot : Boot the LAM RTE before launching the MPI processes.

• -boot-args <args >: Pass<args > to the back-endlamboot . Implies-boot .

• -machinefile <filename >: Specify<filename > as the boot schema to use when invok-
ing the back-endlamboot . Implies-boot .

• -ssi <key > <value >: Pass the SSI<key > and<value > arguments to the back-endmpirun
command.

Local arguments are specific to an individual MPI process that will be launched. They are specified
along with the executable that will be launched. Common local arguments include:

• -n <numprocs >: Launch<numprocs > number of copies of this executable.

• -arch <architecture >: Launch the executable on nodes in the LAM universe that match this
architecture. An architecture is determined to be a match if the<architecture > matches any
subset of the GNU Autoconf architecture string on each of the target nodes (thelaminfo command
shows the GNU Autoconf configure string).

• <other arguments >: Whenmpiexec first encounters an argument that it doesn’t recognize,
the remainder of the arguments will be passed back tompirun to actually start the process.

The following example launches four copies of themy mpi program executable in the LAM universe,
using default scheduling patterns:� �
shell$mpiexec−n 4 my mpi program� �
7.10.2 Launching MPMD Processes

The : separator can be used to launch multiple executables in the same MPI job. Specifically, each pro-
cess will share a commonMPI COMM WORLD. For example, the following launches a singlemanager
process as well as aworker process for every CPU in the LAM universe:� �
shell$mpiexec−n 1 manager : C worker� �

Paired with the-arch flag, this can be especially helpful in heterogeneous environments:� �
shell$mpiexec−arch solaris solprogram :−arch linux linuxprogram� �

Even only “slightly heterogeneous” environments can run into problems with shared libraries, different
compilers, etc. The-arch flag can be used to differentiate between different versions of the same operating
system:� �
shell$mpiexec−arch solaris2.8 sol2.8program :−arch solaris2.9 sol2.9program� �

7.11. THE MPIMSGCOMMAND (DEPRECATED) 49

7.10.3 Launching MPI Processes with No Established LAM Universe

The-boot , -boot-args , and-machinefile global arguments can be used to launch the LAM RTE,
run the MPI process(es), and then take down the LAM RTE. This conveniently wraps up several LAM
commands and provides “one-shot” execution of MPI processes. For example:� �
shell$mpiexec−machinefile hostfile C mympi program� �

Some boot SSI modules do not require a hostfile; specifying the-boot argument is sufficient in these
cases:� �
shell$mpiexec−boot C mympi program� �

Whenmpiexec is used to boot the LAM RTE, it will do its best to take down the LAM RTE even if
errors occur, either during the boot itself, or if an MPI process aborts (or the user hits Control-C).

7.11 Thempimsg Command (Deprecated)

Thempimsg command is deprecated. It is only useful in a small number of cases (specifically, when the
lamd RPI module is used), and may disappear in future LAM/MPI releases.

7.12 Thempirun Command

Thempirun command is the main mechanism to launch MPI processes in parallel.

7.12.1 Simple Examples

Althoughmpirun supports many different modes of execution, most users will likely only need to use a
few of its capabilities. It is common to launch either one process per node or one process per CPU in the
LAM universe (CPU counts are established in the boot schema). The following two examples show these
two cases:� �
Launch one copy of mympi program on every schedulable node in the LAM universe
shell$mpirun N mympi program� �� �
Launch one copy of mympi program on every schedulable CPU in the LAM universe
shell$mpirun C mympi program� �

The specific number of processes that are launched can be controlled with the-np switch:� �
Launch four mympi program processes
shell$mpirun−np 4 mympi program� �

The-ssi switch can be used to specify tunable parameters to MPI processes.� �
Specify to use the usysv RPI module
shell$mpirun−ssi rpi usysv C mympi program� �

The available modules and their associated parameters are discussed in detail in Chapter9.
Arbitrary user arguments can also be passed to the user program.mpirun will attempt to parse all

options (looking for LAM options) until it finds a-- . All arugments following-- are directly passed to the
MPI application.

50 CHAPTER 7. LAM/MPI COMMAND QUICK REFERENCE

� �
Pass three command line arguments to every instance of mympi program
shell$mpirun−ssi rpi usysv C mympi program arg1 arg2 arg3
Pass three command line arguments, escaped from parsing
shell$mpirun−ssi rpi usysv C mympi program−− arg1 arg2 arg3� �
7.12.2 Controlling Where Processes Are Launched

mpirun allows for fine-grained control of where to schedule launched processes. Note LAM uses the
term “schedule” extensively to indicate which nodes processes are launched on. LAM doesnot influence
operating system semantics for prioritizing processes or binding processes to specific CPUs. The boot
schema file can be used to indicate how many CPUs are on a node, but this is only used for scheduling
purposes. For a fuller description of CPU counts in boot schemas, see Sections4.4.1and8.1.1on pages20
and55, respectively.

LAM offers two main scheduling nomenclatures: by node and by CPU. For exampleN means “all
schedulable nodes in the universe” (“schedulable” is defined in Section7.1.2). Similarly, C means “all
schedulable CPUs in the universe.”

More fine-grained control is also possible – nodes and CPUs can be individually identified, or identified
by ranges. The syntax for these concepts isn<range > andc<range >, respectively.<range > can
specify one or more elements by listing integers separated by commas and dashes. For example:

• n3 : The node with an ID of 3.

• c2 : The CPU with an ID of 2.

• n2,4 : The nodes with IDs of 2 and 4.

• c2,4-7 : The CPUs with IDs of 2, 4, 5, 6, and 7. Note that some of these CPUs may be on the same
node(s).

Integers can range from 0 to the highest numbered node/CPU. Note that these nomenclatures can be
mixed and matched on thempirun command line:� �
shell$mpirun n0 C manager−worker� �
will launch themanager-worker program onn0 as well as on every schedulable CPU in the universe
(yes, this means thatn0 will likely be over-subscribed).

When running on SMP nodes, it is preferable to use theC/c<range > nomenclature (with appropriate
CPU counts in the boot schema) to theN/n<range > nomenclature because of how LAM will order ranks
in MPI COMM WORLD. For example, consider a LAM universe of two four-way SMPs –n0 andn1 both
have a CPU count of 4. Using the following:� �
shell$mpirun C mympi program� �
will launch eight copies ofmy mpi program , four on each node. LAM will place as many adjoiningMPI -
COMM WORLD ranks on the same node as possible:MPI COMM WORLD ranks 0-3 will be scheduled
on n0 andMPI COMM WORLD ranks 4-7 will be scheduled onn1 . Specifically,C schedules processes
starting withc0 and incrementing the CPU index number.

Note that unless otherwise specified, LAM schedules processes by CPU (vs. scheduling by node). For
example, usingmpirun ’s -np switch to specify an absolute number of processes schedules on a per-CPU
basis.

7.12. THE MPIRUNCOMMAND 51

7.12.3 Per-Process Controls

mpirun allows for arbitrary, per-process controls such as launching MPMD jobs, passing different com-
mand line arguments to differentMPI COMM WORLD ranks, etc. This is accomplished by creating a text
file called an application schema that lists, one per line, the location, relevant flags, user executable, and
command line arguments for each process. For example (lines beginning with “#” are comments):� �
Start the manager on c0 with a specific set of command line options
c0 manager managerarg1 managerarg2 managerarg3
Start the workers on all available CPUs with different arguments
C worker workerarg1 workerarg2 workerarg3� �

Note that the-ssi switch isnot permissible in application schema files;-ssi flags are considered to
be global to the entire MPI job, not specified per-process. Application schemas are described in more detail
in theappschema(5) manual page.

7.12.4 Ability to Pass Environment Variables

All environment variables with names that begin withLAMMPI are automatically passed to remote notes
(unless disabled via the-nx option tompirun). Additionally, the-x option enables exporting of specific
environment variables to the remote nodes:� �
shell$LAM MPI FOO=‘‘green eggs and ham’’
shell$export LAM MPI FOO
shell$mpirun C−x DISPLAY,SEUSS=author samIam� �

This will launch thesamIam application on all available CPUs. TheLAMMPI FOO, DISPLAY, and
SEUSSenvironment variables will be created each the process environment before thesmaIam program is
invoked.

Note that the parser for the-x option is currently not very sophisticated – it cannot even handle quoted
values when defining new environment variables. Users are advised to set variables in the environment
prior to invokingmpirun , and only use-x to export the variables to the remote nodes (not to define new
variables), if possible.

7.12.5 Current Working Directory Behavior

Using the-wd option tompirun allows specifying an arbitrary working directory for the launched pro-
cesses. It can also be used in application schema files to specify working directories on specific nodes and/or
for specific applications.

If the -wd option appears both in an application schema file and on the command line, the schema file
directory will override the command line value.-wd is mutually exclusive with-D .

If neither -wd nor -D are specified, the local node will send the present working directory name from
thempirun process to each of the remote nodes. The remote nodes will then try to change to that directory.
If they fail (e.g., if the directory does not exist on that node), they will start from the user’s home directory.

All directory changing occurs before the user’s program is invoked; it does not wait untilMPI INIT is
called.

52 CHAPTER 7. LAM/MPI COMMAND QUICK REFERENCE

7.13 Thempitask Command

Thempitask command shows a list of the processes running in the LAM universe and a snapshot of their
current MPI activity. It is usually invoked with no command line parameters, thereby showing summary
details of all processes currently running. Sincempitask only provides a snapshot view, it is not advisable
to usempitask as a high-resolution debugger (see Chapter10, page81, for more details on debugging
MPI programs). Instead,mpitask can be used to provide answers to high-level questions such as “Where
is my program hung?” and “Is my program making progress?”

The following example shows an MPI program running on four nodes, sending a message of 524,288
integers around in a ring pattern. Process 0 is running (i.e., not in an MPI function), while the other three
are blocked inMPI RECV.� �
shell$mpitask
TASK (G/L) FUNCTION PEER|ROOT TAG COMM COUNT DATATYPE
0 ring<running>
1/1 ring Recv 0/0 201 WORLD 524288 INT
2/2 ring Recv 1/1 201 WORLD 524288 INT
3/3 ring Recv 2/2 201 WORLD 524288 INT� �
7.14 Therecon Command

The recon command is a quick test to see if the user’s environment is setup properly to boot the LAM
RTE. It takes most of the same parameters as thelamboot command.

Although it does not boot the RTE, and does not definitively guarantee thatlamboot will succeed, it is
a good tool for testing while setting up first-time LAM/MPI users.recon will display a message when it
has completed indicating whether it succeeded or failed.

7.15 Thetping Command

The tping command can be used to verify the functionality of a LAM universe. It is used to send a ping
message between the LAM daemons that constitute the LAM RTE.

It commonly takes two arguments: the set of nodes to ping (expressed inN notation) and how many
times to ping them. Similar to the Unixping command, if the number of times to ping is not specified,
tping will continue until it is stopped (usually by the user hitting Control-C). The following example pings
all nodes in the LAM universe three times:� �
shell$tping N−c 3

1 byte from 3 remote nodes and 1 local node: 0.002 secs
1 byte from 3 remote nodes and 1 local node: 0.001 secs
1 byte from 3 remote nodes and 1 local node: 0.001 secs

3 messages, 3 bytes (0.003K), 0.005 secs (1.250K/sec)
roundtrip min/avg/max: 0.001/0.002/0.002� �

7.16. THE WIPECOMMAND 53

7.16 Thewipe Command

Thewipe command is used as a “last resort” command, and is typically only necessary iflamhalt fails.
This usually only occurs in error conditions, such as if a node fails. Thewipe command takes most of the
same parameters as thelamboot command – it launches a process on each node in the boot schema to kill
the LAM RTE on that node. Hence, it should be used with the same (or an equivalent) boot schema file as
was used withlamboot .

54 CHAPTER 7. LAM/MPI COMMAND QUICK REFERENCE

Chapter 8

Available LAM Modules

There is currently only type of LAM module that is visible to users:boot, which is used to start the LAM
run-time environment, most often through thelamboot command. Thelamboot command itself is
discussed in Section7.1 (page41); the discussion below focuses on the boot modules that make up the
“back end” implementation oflamboot .

8.1 Booting the LAM Run-Time Environment

LAM provides a number of modules for starting thelamd control daemons. In most cases, thelamd s are
started using thelamboot command. In previous versions of LAM/MPI,lamboot could only usersh
or ssh for starting the LAM run-time environment on remote nodes. In LAM/MPI 7.0.6, it is possible to
use a variety of mechanisms for this process startup. The following mechanisms are available in LAM/MPI
7.0.6:

• BProc

• Globus (beta-level support)

• rsh / ssh

• OpenPBS / PBS Pro (using the Task Management interface)

These mechanisms are discussed in detail below. Note that the sections below each assume that support
for these modules have been compiled into LAM/MPI. Thelaminfo command can be used to determine
exactly which modules are supported in your installation (see Section7.6, page44).

8.1.1 Boot Schema Files (a.k.a., “Hostfiles” or “Machinefiles”)

Before discussing any of the specific boot SSI modules, this section discusses the boot schema file, com-
monly referred to as a “hostfile” or a “machinefile”. Most (but not all) boot SSI modules require a boot
schema, and the text below makes frequent mention of them. Hence, it is worth discussing them before
getting into the details of each boot SSI.

A boot schema is a text file that, in its simplest form, simply lists every host that the LAM run-time
environment will be invoked on. For example:

55

56 CHAPTER 8. AVAILABLE LAM MODULES

� �
This is my boot schema
inky.cluster.example.com
pinky.cluster.example.com
blinkly.cluster.example.com
clyde.cluster.example.com� �

Lines beginning with “#” are treated as comments and are ignored. Each non-blank, non-comment line
must, at a minimum, list a host. Specifically, the first token on each line must specify a host (although the
definition of how that host is specified may vary differ between boot modules).

However, each line can also specify arbitrary “key=value” pairs. A common global key is “cpu ”. This
key takes an integer value and indicates to LAM how many CPUs are available for LAM to use. If the key is
not present, the value of 1 is assumed. This number doesnotneed to reflect the physical number of CPUs –
it can be smaller then, equal to, or greater than the number of physical CPUs in the machine. It is solely used
as a shorthand notation formpirun ’s “C” notation, meaning “launch one process per CPU as specified in
the boot schema file.” For example, in the following boot schema:� �
inky.cluster.example.com cpu=2
pinky.cluster.example.com cpu=4
blinkly.cluster.example.com cpu=4
clyde doesn’t mention a cpu count, and is therefore implicitly 1
clyde.cluster.example.com� �
issuing the command “mpirun C foo ” would actually launch 11 copies offoo : 2 on inky , 4 on
pinky , 4 onblinky , and 1 onclyde .

Note that listing a host more than once has the same effect as incrementing the CPU count. The following
boot schema has the same effect as the previous example (i.e., CPU counts of 2, 4, 4, and 1, respectively):� �
inky has a CPU count of 2
inky.cluster.example.com
inky.cluster.example.com
pinky has a CPU count of 4
pinky.cluster.example.com
pinky.cluster.example.com
pinky.cluster.example.com
pinky.cluster.example.com
blinky has a CPU count of 4
blinkly.cluster.example.com
blinkly.cluster.example.com
blinkly.cluster.example.com
blinkly.cluster.example.com
clyde only has 1 CPU
clyde.cluster.example.com� �

Other keys are defined on a per-boot-SSI-module, and are described below.

8.1.2 Minimum Requirements

In order to successfully launch a process on a remote node, several requirements must be met. Although
each of the boot modules have different specific requirements, all of them share the following conditions for

8.1. BOOTING THE LAM RUN-TIME ENVIRONMENT 57

successful operation:

1. Each target host must be reachable and operational.

2. The user must be able to execute arbitrary processes on the target.

3. The LAM executables must be locatable on that machine. This typically involves using: the shell’s
search path, theLAMHOMEenvironment variable, or a boot-module-specific mechanism.

4. The user must be able to write to the LAM session directory (typically somewhere under/tmp ; see
Section12.8, page94).

5. All hosts must be able to resolve the fully-qualified domain name (FQDN) of all the machines being
booted (including itself).

6. Unless there is only one host being booted, any host resolving to the IP address 127.0.0.1 cannot be
included in the list of hosts.

If all of these conditions are not met,lamboot will fail.

8.1.3 Selecting aboot Module

Only oneboot module will be selected; it will be used for the life of the LAM universe. As such, module
priority values are the only factor used to determine which available module should be selected.

8.1.4 boot SSI Parameters

On many kinds of networks, LAM can know exactly which nodes should be making connections while
booting the LAM run-time environment, and promiscuous connections (i.e., allowing any node to connect)
are discouraged. However, this is not possible in some complex network configurations and promiscuous
connectionsmustbe enabled.

By default, LAM’s baseboot SSI startup protocols disable promiscuous connections. However, this
behavior can be overridden when LAM is configured and at run-time. If the SSI parameterboot base -
promisc set to an empty value, or set to the integer value 1, promiscuous connections will be accepted
when than LAM RTE is booted.

8.1.5 Thebproc Module

The Beowulf Distributed Process Space (BProc) is set of kernel modifications, utilities and libraries which
allow a user to start processes on other machines in a Beowulf-style cluster. Remote processes started with
this mechanism appear in the process table of the front-end machine in a cluster.

LAM/MPI functionality has been tested with BProc version 3.2.5. Prior versions had a bug that affected
at least some LAM/MPI functionality. It is strongly recommended to upgrade to at least version 3.2.5 before
attempting to use the LAM/MPI native BProc capabilities.

Minimum Requirements

Several of the minimum requirements listed in Section8.1.2will already be met in a BProc environment
because BProc will copylamboot ’s entire environment (including thePATH) to the remote node. Hence,
if lamboot is in the user’s path on the local node, it will also [automatically] be in the user’s path on the
remote node.

58 CHAPTER 8. AVAILABLE LAM MODULES

However, one of the minimum requirements conditions (“The user must be able to execute arbitrary
processes on the target”) deserves a BProc-specific clarification. BProc has its own internal permission
system for determining if users are allowed to execute on specific nodes. The system is similar to the user/-
group/other mechanism typically used in many Unix filesystems. Hence, in order for a user to successfully
lamboot on a BProc cluster, he/she must have BProc execute permissions on each of the target nodes.
Consult the BProc documentation for more details.

Usage

In most situations, thelamboot command (and related commands) should automatically “know” to use
thebproc boot SSI module when running on the BProc head node; no additional command line parameters
or environment variables should be required. Specifically, when running in a BProc environment, thebproc
module will report that it is available, and artificially inflate its priority relatively high in order to influence
the boot module selection process. However, the BProc boot module can be forced by specifying theboot
SSI parameter with the value ofbproc .

Runninglamboot on a BProc cluster is just like runninglamboot in a “normal” cluster. Specifically,
you provide a boot schema file (i.e., a list of nodes to boot on) and runlamboot with it. For example:� �
shell$ lamboot hostfile� �

Note that when using thebproc module,lamboot will only function properly from the head node. If
you launchlamboot from a client node, it will likely either fail outright, or fall back to a different boot
module (e.g.,rsh /ssh).

It is suggested that thehostfile file contain hostnames in the style that BProc prefers – integer
numbers. For example,hostfile may contain the following:� �
−1
0
1
2
3� �

which boots on the BProc front end node (-1) and four slave nodes (0, 1, 2, 3). Note that using IP hostnames
will also work, but using integer numbers is recommended.

Tunable Parameters

Table8.1 lists the SSI parameters that are available to thebproc module.

SSI parameter name Default value Description

boot bproc priority 50 Default priority level.

Table 8.1: SSI parameters for thebproc boot module.

Special Notes

After booting, LAM will, by default, not schedule to run MPI jobs on the BProc front end. Specifically,
LAM implicitly sets the “no-schedule” attribute on the -1 node in a BProc cluster. See Section7.1(page41)
for more detail about this attribute and boot schemas in general.

8.1. BOOTING THE LAM RUN-TIME ENVIRONMENT 59

8.1.6 Theglobus Module

LAM/MPI 7.0.6 includes beta support for Globus. Specifically, only limited types of execution are possible.
The LAM Team would appreciate feedback from the Globus community on expanding Globus support in
LAM/MPI.

Minimum Requirements

LAM/MPI jobs in Globus environment can only be started on nodes using the “fork” job manager for the
Globus gatekeeper. Other job managers are not yet supported.

Usage

Starting the LAM run-time environmetn in Globus environment makes use of the Globus Resource Alloca-
tion Manager (GRAM) clientglobus-job-run . The Globus boot SSI module will never run automat-
ically; it must always be specifically requested setting theboot SSI parameter toglobus . Specifically,
although theglobus module will report itself available ifglobus-job-run can be found in thePATH,
the default priority will be quite low, effectively ensuring that it will not be selected unless it is the only
module available (which will only occur if theboot parameter is set toglobus).

LAM needs to be able to find the Globus executables. This can be accompilshed either by adding the
appropriate directory to your path, or by setting theGLOBUSLOCATION environment variable.

Additionally, theLAMMPI SESSIONSUFFIX environment variable should be set to a unique value.
This ensures that this instance of the LAM universe does not conflict with any other, concurrent LAM
universes that are running under the same username on nodes in the Globus environment. Although any
value can be used for this variable, it is probably best to have some kind of organized format, such as
<your username>-<some long random number> .

Next, create a boot schema to use withlamboot . Hosts are listed by their Globus contact strings (see
the Globus manual for more information about contact strings). In cases where the Globus gatekeeper is
running as ainetd service on the node, the contact string will simply be the hostname. If the contact
string contains whitespace, theentirecontact string must be enclosed in quotes (i.e., not just the values with
whitespaces). For example, if your contact string is:

host1:port1:/O=xxx/OU=yyy/CN=aaa bbb ccc
Then you will need to have it listed as:

"host1:port1:/O=xxx/OU=yyy/CN=aaa bbb ccc"
The following will not work:

host1:port1:/O=xxx/OU=yyy/CN="aaa bbb ccc"
Each host in the boot schema must also have a “lam install path ” key indicating the absolute

directory where LAM/MPI is installed. This value is mandatory because you cannot rely on thePATH
environment variable in Globus environment because users’ “dot” files are not executed in Globus jobs
(and therefore thePATHenvironment variable is not provided). Other keys can be used as well;lam -
install path is the only mandatory key.

Here is a sample Globus boot schema: > (7.0.5)� �
Globus boot schema
‘‘inky.mycluster:12853:/O=MegaCorp/OU=Mine/CN=HPC Group’’ prefix=/opt/lam cpu=2
‘‘pinky.yourcluster:3245:/O=MegaCorp/OU=Yours/CN=HPC Group’’ prefix=/opt/lam cpu=4
‘‘blinky.hiscluster:23452:/O=MegaCorp/OU=His/CN=HPC Group’’ prefix=/opt/lam cpu=4
‘‘clyde.hercluster:82342:/O=MegaCorp/OU=Hers/CN=HPC Group’’ prefix=/software/lam� �

60 CHAPTER 8. AVAILABLE LAM MODULES

⊥ (7.0.5)

Once you have this boot schema, thelamboot command can be used to launch it. Note, however, that
unlike the other boot SSI modules, the Globus boot module will never be automatically selected by LAM –
it must be selected manually with theboot SSI parameter with the valueglobus .� �
shell$ lamboot−ssi boot globus hostfile� �
Tunable Parameters

Table8.2 lists the SSI parameters that are available to theglobus module.

SSI parameter name Default value Description

boot globus priority 3 Default priority level.

Table 8.2: SSI parameters for theglobus boot module.

8.1.7 Thersh Module (including ssh)

Thersh /ssh boot SSI module is typically the “least common denominator” boot module. When not in an
otherwise “special” environment (such as a batch scheduler), thersh /ssh boot module is typically used to
start the LAM run-time environment.

Minimum Requirements

In addition to the minimum requirements listed in Section8.1.2, the following additional conditions must
also be met for a successfullamboot using thersh / ssh boot module:

1. The user must be able to execute arbitrary commands on each target host without being prompted for
a password.

2. The shell’s start-up script must not print anything on standard error. The user can take advantage of
the fact thatrsh / ssh will start the shell non-interactively. The start-up script can exit early in this
case, before executing many commands relevant only to interactive sessions and likely to generate
output.

Section4 (page17) provides a short tutorial on using thersh / ssh boot module, including tips on
setting up “dot” files, setting up password-less remote execution, etc.

Usage

Using rsh , ssh , or other remote-execution agent is probably the most common method for starting the
LAM run-time execution environment. The boot schema typically lists the hostnames, CPU counts, and an
optional username (if the user’s name is different on the remote machine). For example:� �
rsh boot schema
inky.cluster.example.com cpu=2
pinky.cluster.example.com cpu=4
blinky.cluster.example.com cpu=4
clyde.cluster.example.com user=jsmith� �

8.1. BOOTING THE LAM RUN-TIME ENVIRONMENT 61

The rsh / ssh boot module will usually run when no other boot module has been selected. It can,
however, be manually selected, even when another module would typically [automatically] be selected by
specifying theboot SSI parameter with the value ofrsh . For example:� �
shell$ lamboot−ssi boot rsh hostfile� �
Tunable Parameters

Table8.3 lists the SSI parameters that are available to thersh module.

SSI parameter name Default value Description

boot rsh agent From configure Remote shell agent to use.
boot rsh priority 10 Default priority level.
boot rsh username None Username to use if different than login name.

Table 8.3: SSI parameters for thersh boot module.

8.1.8 Thetm Module (OpenPBS / PBS Pro)

Both OpenPBS and PBS Pro (both products of Altair Grid Technologies, LLC), contain support for the Task
Management (TM) interface. When using TM,rsh /ssh is not necessary to launch jobs on remote notes.

The advantages of using PBS’s TM interface are:

• PBS can generate proper accounting information for all nodes in a parallel job.

• PBS can kill entire jobs properly when the job ends.

• lamboot executes significantly faster when using TM as compared to when it usesrsh / ssh .

Usage

When running in a PBS batch job, LAM should automatically detect that it should use thetm boot module –
no extra command line parameters or environment variables should be necessary. Specifically, when running
in a PBS job, thetm module will report that it is available, and artificially inflate its priority relatively high
in order to influence the boot module selection process. However, thetm boot module can be forced by
specifying theboot SSI parameter with the value oftm .

Unlike thersh /ssh boot module, you do not need to specify a hostfile for the TM boot module. Instead,
PBS itself provides a list of nodes (and associated CPU counts) to LAM. Usinglamboot is therefore as
simple as:� �
shell$ lamboot� �

The TM boot modules works in both interactive and non-interactive batch jobs.

Tunable Parameters

Table8.4 lists the SSI parameters that are available to thetm module.

62 CHAPTER 8. AVAILABLE LAM MODULES

SSI parameter name Default value Description

boot tm priority 50 Default priority level.

Table 8.4: SSI parameters for thetm boot module.

Special Notes

Since the TM boot module is designed to work in PBS jobs, it will fail if the TM boot module is manually
specified and LAM is not currently running in a PBS job.

The TM module does not start a shell on the remote node. Instead, the entire environment oflamboot
is pushed to the remote nodes before starting the LAM run-time environment.

Also note that the Altair-provided client RPMs for PBS Pro do not include thepbs demux command,
which is necessary for proper execution of TM jobs. The solution is to copy the executable from the server
RPMs to the client nodes.

Finally, TM does not provide a mechanism for path searching on the remote nodes, so thelamd exe-
cutable is required to reside in the same location on each node to be booted.

Chapter 9

Available MPI Modules

There are multiple types of MPI modules:

1. rpi: MPI point-to-point communication, also known as the LAM Request Progression Interface (RPI).

2. coll: MPI collective communication.

3. cr: Checkpoint/restart support for MPI programs.

Each of these types, and the modules that are available in the default LAM distribution, are discussed in
detail below.

9.1 MPI Module Selection Process

The modules used in an MPI process may be related or dependent upon external factors. For example, the
gm RPI cannot be used for MPI point-to-point communication unless there is Myrinet hardware present in
the node. Theblcr checkpoint/restart module cannot be used unless thread support was included. And so
on. As such, it is important for users to understand the module selection algorithm.

1. Set the thread level to be what was requested, either viaMPI INIT THREAD or the environment
variableLAMMPI THREADLEVEL .

2. Query relevant modules and make lists of the resulting available modules. “Relevant” means either a
specific module (or set of modules) if the user specified them through SSI parameters, or all modules
if not specified.

3. Eliminate all modules who do not support the current MPI thread level.

4. If no rpi modules remain, try a lower thread support level until all levels have been tried. If no thread
support level can provide anrpi module, abort.

5. Select the highest priorityrpi module. Reset the thread level (if necessary) to be at least the lower
bound of thread levels that the selectedrpi module supports.

6. Eliminate allcoll andcr modules that cannot operate at the current thread level.

7. If no coll modules remain, abort. Final selectioncoll modules is discussed in Section9.3.1(page73).

8. If no cr modules remain and checkpoint/restart support was specifically requested, abort. Otherwise,
select the highest prioritycr module.

63

64 CHAPTER 9. AVAILABLE MPI MODULES

9.2 MPI Point-to-point Communication (Request Progression Interface /
RPI)

LAM provides multiple SSI modules for MPI point-to-point communication. Also known as the Request
Progression Interface (RPI), these modules are used for all aspects of MPI point-to-point communication
in an MPI application. Some of the modules require external hardware and/or software (e.g., the native
Myrinet RPI module requires both Myrinet hardware and the GM message passing library). Thelaminfo
command can be used to determine which RPI modules are available in a LAM installation.

Although one RPI module will likely be the default, the selection of which RPI module is used can be
changed through the SSI parameterrpi . For example:� �
shell$mpirun−ssi rpi tcp C mympi program� �
runs themy mpi program executable on all available CPUs using thetcp RPI module, while:� �
shell$mpirun−ssi rpi gm C mympi program� �
runs themy mpi program executable on all available CPUs using thegm RPI module.

It should be noted that the choice of RPI usually does not affect theboot SSI module – hence, the
lamboot command requirements on hostnames specified in the boot schema is not dependent upon the
RPI. For example, if thegm RPI is selected,lamboot may still require TCP/IP hostnames in the boot
schema, not Myrinet hostnames. Also note that selecting a particular module does not guarantee that it will
be able to be used. For example, selecting thegm RPI module will still cause a run-time failure if there is
no Myrinet hardware present.

The available modules are described in the sections below. Note that much of this information (particu-
larly the tunable SSI parameters) is also available in thelamssi rpi(7) manual page.> (7.0.3)

9.2.1 Two Different Shared Memory RPI Modules

Thesysv (Section9.2.5, page69) and theusysv (Section9.2.7, page71) modules differ only in the mech-
anism used to synchronize the transfer of messages via shared memory. Thesysv module uses System V
semaphores while theusysv module uses spin locks with back-off. Both modules use a small number of
System V semaphores for synchronizing both the deallocation of shared structures and access to the shared
pool.

The blocking nature of thesysv module should generally provide better performance thanusysv on
oversubscribed nodes (i.e., when the number of processes is greater than the number of available processors).
System V semaphores will effectively force processes yield to other processes, allowing at least some degree
of fair/regular scheduling. In non-oversubscribed environments (i.e., where the number of processes is
less than or equal to the number of available processors), theusysv RPI should generally provide better
performance than thesysv RPI because spin locks keep processors busy-waiting. This hopefully keeps the
operating system from suspending or swapping out the processes, allowing them to react immediately when
the lock becomes available.⊥ (7.0.3)

9.2.2 Thecrtcp Module (Checkpoint-able TCP Communication)

Module Summary
Name: crtcp
Kind: rpi

Default SSI priority: 25
Checkpoint / restart: yes

9.2. MPI POINT-TO-POINT COMMUNICATION (REQUEST PROGRESSION INTERFACE / RPI) 65

Thecrtcp RPI module is almost identical to thetcp module, described in Section9.2.6. TCP sockets
are used for communication between MPI processes.

Overview

The following are the main differences between thetcp andcrtcp RPI modules:

• Thecrtcp module can be checkpointed and restarted. It is currently theonlyRPI module in LAM/MPI
that supports checkpoint/restart functionality.

• The crtcp module does not have the “fast” message passing optimization that is in thetcp module.
As result, there is a small performance loss in certain types of MPI applications.

All other aspects of thecrtcp module are the same as thetcp module.

Checkpoint/Restart Functionality

Thecrtcp module is designed to work in conjunction with acr module to provide checkpoint/restart func-
tionality. See Section9.4for a description of how LAM’s overall checkpoint/restart functionality is used.

The crtcp module’s checkpoint/restart functionality is invoked when thecr module indicates that it is
time to perform a checkpoint. Thecrtcp then quiesces all “in-flight” MPI messages and then allows the
checkpoint to be performed. Upon restart, TCP connections are re-formed, and message passing processing
continues. No additional buffers or “rollback” mechanisms are required, nor is any special coding required
in the user’s MPI application.

Tunable Parameters

Thecrtcp module has the same tunable parameter as thetcp module (maximum size of a short message),
although it has a different name:rpi crtcp short .

SSI parameter name Default value Description

rpi crtcp priority 25 Default priority level.
rpi crtcp short 65535 Maximum length (in bytes) of a “short” message.

Table 9.1: SSI parameters for thecrtcp RPI module.

9.2.3 Thegm Module (Myrinet)

Module Summary
Name: gm
Kind: rpi

Default SSI priority: 50
Checkpoint / restart: no

The gm RPI module is for native message passing over Myrinet networking hardware. Thegm RPI
provides low latency, high bandwidth message passing performance. As such, most users likely do not need
to read the rest of this section.

66 CHAPTER 9. AVAILABLE MPI MODULES

Overview

In general, using thegm RPI module is just like using any other RPI module – MPI functions will simply
use native GM message passing for their back-end message transport.

Although it is not required, users are strongly encouraged to use theMPI ALLOC MEM andMPI -
FREE MEM functions to allocate and free memory (instead of, for example,malloc() andfree() .

Tunable Parameters

Table9.2 shows the SSI parameters that may be changed at run-time; the text below explains each one in
detail.

SSI parameter name Default value Description

rpi gm maxport 32 Maximum GM port number to check during
MPI INIT when looking for an available port.

rpi gm nopin 0 Whether to let LAM/MPI pin arbitrary buffers or
not.

rpi gm port -1 Specific GM port to use (-1 indicates none).
rpi gm priority 50 Default priority level.
rpi gm shortmsglen 8192 Maximum length (in bytes) of a “short” message.
rpi gm tinymsglen 1024 Maximum length (in bytes) of a “tiny” message.

Table 9.2: SSI parameters for thegm RPI module.

Port Allocation

It is usually unnecessary to specify which Myrinet/GM port to use. LAM/MPI will automatically attempt to
acquire ports greater than 1.

By default, LAM will check for any available port between 1 and 8. If your Myrinet hardware has
more than 8 possible ports, you can change the upper port number that LAM will check with therpi gm -
maxport SSI parameter.

However, if you wish LAM to use a specific GM port number (and not check all the ports from
[1,maxport]), you can tell LAM which port to use with therpi gm port SSI parameter. Specifying
which port to use has precedence over the port range check – if a specific port is indicated, LAM will try to
use that and not check a range of ports. Specifying to use port “-1” (or not specifying to use a specific port)
will tell LAM to check the range of ports to find any available port.

Note that in all cases, if LAM cannot acquire a valid port for every MPI process in the job, the entire job
will be aborted.

Be wary of forcing a specific port to be used, particularly in conjunction with the MPI dynamic process
calls (e.g.,MPI COMM SPAWN). For example, attempting to spawn a child process on a node that already
has an MPI process in the same job, LAM will try to use the same specific port, which will result in failure
because the MPI process already on that node will have already claimed that port.

Adjusting Message Lengths

Thegm RPI uses three different protocols for passing data between MPI processes: tiny, short, and long.
Selection of which protocol to use is based solely on the length of the message. Tiny messages are sent

9.2. MPI POINT-TO-POINT COMMUNICATION (REQUEST PROGRESSION INTERFACE / RPI) 67

(along with tag and communicator information) in one transfer to the receiver. Short messages send two
transfers: an “envelope” message (tag and communicator information) followed by the data of the message.
Long messages use a rendezvous protocol – the envelope is sent to the destination, the receiver responds
with an ACK (when it is ready), and then the sender sends another envelope followed by the data of the
message.

The message lengths at which the different protocols are used can be changed with the SSI parameters
rpi gm tinymsglen and rpi gm shortmsglen , which represent the maximum length of tiny and
short messages, respectively. LAM defaults to 1,024 bytes and 8,192 bytes for the maximum lengths of tiny
and short messages, respectively.

The maximum short message lengthmustbe larger than the maximum tiny length. If it is not, LAM
will adjust the maximum short message length to be one more than the maximum tiny message length,
effectively eliminating short messages – leaving only tiny and long.

It may be desirable to adjust these values for different kinds of applications and message passing pat-
terns. The LAM Team would appreciate feedback on the performance of different values for real world
applications.

Pinning Memory

The Myrinet native communication library (gm) can only communicate through “registered” or “pinned”
memory. In most operating systems, LAM/MPI handles this automatically by pinning user-provided buffers
when required. This allows for good message passing performance, especially when re-using buffers to
send/receive multiple messages.

However, the gm library does not have the ability to pin arbitrary memory on Solaris systems – auxiliary
buffers must be used. Although LAM/MPI controls all pinned memory, this has a detrimental effect on
performance of large messages: LAM/MPI must copy all messages from the application-provided buffer
to an auxiliary buffer before it can be sent (and vice versa for receiving messages). As such, users are
strongly encouraged to use theMPI ALLOC MEM andMPI FREE MEM functions instead ofmalloc()
andfree() . Using these functions will allocate “pinned” memory such that LAM/MPI will not have to
use auxiliary buffers and an extra memory copy.

Therpi gm nopin SSI parameter can be used to force Solaris-like behavior. On Solaris platforms, the
default value is “1”, specifying to use auxiliary buffers as described above. On non-Solaris platforms, the
default value is “0”, meaning that LAM/MPI will attempt to pin and send/receive directly from user buffers.

Note that since LAM/MPI manages all pinned memory, LAM/MPI must be aware of memory that is
freed so that it can be properly unpinned before it is returned to the operating system. Hence, LAM/MPI
must intercept calls to functions such assbrk() andmunmap() to effect this behavior. Since gm cannot
pin arbitrary memory on Solaris, LAM/MPI does not need to intercept these calls on Solaris machines.

To this end, the ptmalloc memory allocation package1 is included in LAM/MPI, and will automatically
be included on platforms that support arbitrary pinning. ptmalloc allows LAM/MPI to intercept the relevant
functions and ensure that memory is unpinned before returning it to the operating system. Use of ptmalloc
will effectively overload all memory allocation functions (e.g.,malloc() , calloc() , free() , etc.)
for all applications that are linked against the LAM/MPI libraries (potentially regardless of whether they are
using the gm RPI module or not). The ptmalloc package is thread safe and suitable for use in any application
(it is the same memory allocations package that is included in the GNU Libc package).

1http://www.malloc.de/

http://www.malloc.de/

68 CHAPTER 9. AVAILABLE MPI MODULES

Memory Checking Debuggers

When running LAM’sgm RPI through a memory checking debugger (see Section10.4), a number of “Read
from unallocated” (RUA) and/or “Read from uninitialized” (RFU) errors may appear, originating from func-
tions beginning with “gm * ” or “ lam ssi rpi gm * ”. These RUA/RFU errors are normal – they are not
actually reads from unallocated sections of memory. The Myrinet hardware and gm kernel device driver
handle some aspects of memory allocation, and therefore the operating system/debugging environment is
not always aware of all valid memory. As a result, a memory checking debugger will often raise warnings,
even though this is valid behavior.

Known Issues

As of LAM 7.0.6, the following issues still remain in thegm RPI module:

• Heterogeneity between big and little endian machines is not supported.

• Thegm RPI is not supported with IMPI.

• Mixed shared memory / GM message passing is not yet supported; all message passing is through
Myrinet / GM.

• XMPI tracing is not yet supported.> (7.0.3)

• The gm RPI module is designed to run in environments where the number of available processors
is greater than or equal to the number of MPI processes on a given node. Thegm RPI module will
perform poorly (particularly in blocking MPI communication calls) if there are less processors than
processes on a node.⊥ (7.0.3)

9.2.4 Thelamd Module (Daemon-Based Communication)

Module Summary
Name: lamd
Kind: rpi

Default SSI priority: 10
Checkpoint / restart: no

The lamd RPI module uses the LAM daemons for all interprocess communication. This allows for true
asynchronous message passing (i.e., messages can progress even while the user’s program is executing),
albeit at the cost of a significantly higher latency and lower bandwidth.

Overview

Rather than send messages directly from one MPI process to another, all messages are routed through the
local LAM daemon, the remote LAM daemon (if the target process is on a different node), and then finally
to the target MPI process. This potentially adds two hops to each MPI message.

Although the latency incurred can be significant, thelamd RPI can actually make message passing
progress “in the background.” Specifically, since LAM/MPI is an single-threaded MPI implementation, it
can typically only make progress passing messages when the user’s program is in an MPI function call. With
the lamd RPI, since the messages are all routed through separate processes, message passing can actually
occur when the user’s program isnot in an MPI function call.

9.2. MPI POINT-TO-POINT COMMUNICATION (REQUEST PROGRESSION INTERFACE / RPI) 69

User programs that utilize latency-hiding techniques can exploit this asynchronous message passing
behavior, and therefore actually achieve high performance despite of the high overhead associated with the
lamd RPI.2

Tunable Parameters

The lamd module has only one tunable parameter: its priority.

SSI parameter name Default value Description

rpi lamd priority 10 Default priority level.

Table 9.3: SSI parameters for thelamd RPI module.

9.2.5 Thesysv Module (Shared Memory Using System V Semaphores)

Module Summary
Name: sysv
Kind: rpi

Default SSI priority: 30
Checkpoint / restart: no

The sysv RPI is the one of two combination shared-memory/TCP message passing modules. Shared
memory is used for passing messages to processes on the same node; TCP sockets are used for passing
messages to processes on other nodes. System V semaphores are used for synchronization of the shared
memory pool. > (7.0.3)

Be sure to read Section9.2.1(page64) on the difference between this module and theusysv module. ⊥ (7.0.3)

Overview

Processes located on the same node communicate via shared memory. One System V shared segment shared
by all processes on the same node. This segment is logically divided into three areas. The total size of the
shared segment (in bytes) allocated on each node is:

(2× C) + (N × (N − 1)× (S + C)) + P

whereC is the cache line size,N is the number of processes on the node,S is the maximum size of
short messages, andP is the size of the pool for large messages,

The first area (of size(2 × C)) is for the global pool lock. Thesysv module allocates a semaphore
set (of size 6) for each process pair communicating via shared memory. On some systems, the operating
system may need to be reconfigured to allow for more semaphore sets if running tasks with many processes
communicating via shared memory.

The second area is for “postboxes”, or short message passing. A postbox is used for communication
one-way between two processes. Each postbox is the size of a short message plus the length of a cache line.
There is enough space allocated for(N × (N − 1)) postboxes. The maximum size of a short message is
configurable with therpi ssi sysv short SSI parameter.

2Several users on the LAM/MPI mailing list have mentioned this specifically; even though thelamd RPI is slow, it provides
significantlybetter performance because it can provide true asynchronous message passing.

70 CHAPTER 9. AVAILABLE MPI MODULES

The final area in the shared memory area (of sizeP) is used as a global pool from which space for
long message transfers is allocated. Allocation from this pool is locked. The default lock mechanism is
a System V semaphore but can be changed to a process-shared pthread mutex lock. The size of this pool
is configurable with therpi ssi sysv shmpoolsize SSI parameter. LAM will try to determineP
at configuration time if none is explicitly specified. Larger values should improve performance (especially
when an application passes large messages) but will also increase the system resources used by each task.

Use of the Global Pool

When a message larger than (2S) is sent, the transport sendsS bytes with the first packet. When the
acknowledgment is received, it allocates (messagelength−S) bytes from the global pool to transfer the rest
of the message.

To prevent a single large message transfer from monopolizing the global pool, allocations from the pool
are actually restricted to a maximum ofrpi ssi sysv shmmaxalloc bytes. Even with this restriction,
it is possible for the global pool to temporarily become exhausted. In this case, the transport will fall back
to using the postbox area to transfer the message. Performance will be degraded, but the application will
progress.

Tunable Parameters

Table9.4 shows the SSI parameters that may be changed at run-time. Each of these parameters were dis-
cussed in the previous sections.

SSI parameter name Default value Description

rpi sysv priority 30 Default priority level.
rpi sysv pollyield 1 Whether or not to force the use ofyield() to

yield the processor.
rpi sysv shmmaxalloc From configure Maximum size of a large message atomic trans-

fer. The default value is calculated when LAM is
configured.

rpi sysv shmpoolsize From configure Size of the shared memory pool for large mes-
sages. The default value is calculated when LAM
is configured.

rpi sysv short 8192 Maximum length (in bytes) of a “short” message
for sending via shared memory (i.e., on-node).
Directly affects the size of the allocated “postbox”
shared memory area.

rpi tcp short 65535 Maximum length (in bytes) of a “short” message
for sending via TCP sockets (i.e., off-node).

Table 9.4: SSI parameters for thesysv RPI module.

9.2. MPI POINT-TO-POINT COMMUNICATION (REQUEST PROGRESSION INTERFACE / RPI) 71

9.2.6 Thetcp Module (TCP Communication)

Module Summary
Name: tcp
Kind: rpi

Default SSI priority: 20
Checkpoint / restart: no

Thetcp RPI module uses TCP sockets for MPI point-to-point communication.

Tunable Parameters

Two different protocols are used to pass messages between processes: short and long. Short messages
are sent eagerly and will not block unless the operating system blocks. Long messages use a rendezvous
protocol; the body of the message is not sent until a matching MPI receive is posted. The crossover point
between the short and long protocol defaults to 64KB, but can be changed with therpi tcp short SSI
parameter, an integer specifying the maximum size (in bytes) of a short message.

SSI parameter name Default value Description

rpi tcp priority 20 Default priority level.
rpi tcp short 65535 Maximum length (in bytes) of a “short” message.

Table 9.5: SSI parameters for thetcp RPI module.

9.2.7 Theusysv Module (Shared Memory Using Spin Locks)

Module Summary
Name: usysv
Kind: rpi

Default SSI priority: 40
Checkpoint / restart: no

Theusysv RPI is the one of two combination shared-memory/TCP message passing modules. Shared
memory is used for passing messages to processes on the same node; TCP sockets are used for passing
messages to processes on other nodes. Spin locks with back-off are used for synchronization of the shared
memory pool (a System V semaphore or pthread mutex is also used for access to the per-node shared
memory pool). > (7.0.3)

The nature of spin locks means that theusysv RPI will perform poorly when there are more processes
than processors (particularly in blocking MPI communication calls). If no higher priority RPI modules
are available (e.g., Myrinet/gm) and the user does not select a specific RPI module through therpi SSI
parameter,usysv may be selected as the default – even if there are more processes than processors. Users
should keep this in mind; in such circumstances, it is probably better to manually select thesysv or tcp RPI
modules. ⊥ (7.0.3)

72 CHAPTER 9. AVAILABLE MPI MODULES

Overview

Aside from synchronization, theusysv RPI module is almost identical to thesysv module. Theusysv
module uses spin locks with back-off. When a process backs off, it attempts to yield the processor. If
the configure script found a system-provided yield function,3 it is used. If no such function is found, then
select() onNULL file descriptor sets with a timeout of 10us is used.

Tunable Parameters

Table9.6shows the SSI parameters that may be changed at run-time. Many of these parameters are identical
to theirsysv counterparts and are not re-described here.

SSI parameter name Default value Description

rpi tcp short 65535 Maximum length (in bytes) of a “short” message
for sending via TCP sockets (i.e., off-node).

rpi usysv pollyield 1 Same assysv counterpart.
rpi usysv priority 40 Default priority level.
rpi usysv readlockpoll 10,000 Number of iterations to spin before yielding the

processing while waiting to read.
rpi usysv shmmaxalloc From configure Same assysv counterpart.
rpi usysv shmpoolsize From configure Same assysv counterpart.
rpi usysv short 8192 Same assysv counterpart.
rpi usysv writelockpoll 10 Number of iterations to spin before yielding the

processing while waiting to write.

Table 9.6: SSI parameters for theusysv RPI module.

9.3 MPI Collective Communication

MPI collective communication functions have their basic functionality outlined in the MPI standard. How-
ever, the implementation of this functionality can be optimized and/or implemented in different ways. As
such, LAM provides modules for implementing the MPI collective routines that are targeted for different
environments.

• Basic algorithms

• SMP-optimized algorithms

These modules are discussed in detail below. Note that the sections below each assume that support
for these modules have been compiled into LAM/MPI. Thelaminfo command can be used to determine
exactly which modules are supported in your installation (see Section7.6, page44).

3Such asyield() or sched yield() .

9.3. MPI COLLECTIVE COMMUNICATION 73

9.3.1 Selecting acoll Module

coll modules are selected on a per-communicator basis. Most users will not need to override thecoll se-
lection mechanisms; thecoll modules currently included in LAM/MPI usually select the best module for
each communicator. However, mechanisms are provided to override whichcoll module will be selected on
a given communicator.

When each communicator is created (includingMPI COMM WORLD andMPI COMM SELF), all
availablecoll modules are queried to see if they want to be selected. Acoll module may therefore be in use
by zero or more communicators at any given time. The final selection of which module will be used for
a given communicator is based on priority; the module with the highest priority from the set of available
modules will be used for all collective calls on that communicator.

Since the selection of which module to use is inherently dynamic and potentially different for each
communicator, there are two levels of parameters specifying which modules should be used. The first level
specifies the overall set ofcoll modules that will be available toall communicators; the second level is a
per-communicator parameter indicating which specific module should be used.

The first level is provided with thecoll SSI parameter. Its value is a comma-separated list ofcoll
module names. If this parameter is supplied, only these modules will be queried at run time, effectively de-
termining the set of modules available for selection on all communicators. If this parameter is not supplied,
all coll modules will be queried.

The second level is provided with the MPI attributeLAM MPI SSI COLL. This attribute can be set to
the string name of a specificcoll module on a parent communicator before a new communicator is created.
If set, the attribute’s value indicates theonly module that will be queried. If this attribute is not set, all
available modules are queried.

Note that no coordination is done between the SSI frameworks in each MPI process to ensure that the
same modules are available and/or are selected for each communicator. Althoughmpirun allows different
environment variables to be exported to each MPI process, and the value of an MPI attribute is local to each
process, LAM’s behavior is undefined if the same SSI parameters are not available in all MPI processes.

9.3.2 coll SSI Parameters

There are three parameters that apply to allcoll modules. Depending on when their values are checked, they
may be set by environment variables, command line switches, or attributes on MPI communicators.

• coll base associative : The MPI standard defines whether reduction operations are commu-
tative or not, but makes no provisions for whether an operator is associative or not. This parameter, if
defined to 1, asserts that all reduction operations on a communicator are assumed to be associative. If
undefined or defined to 0, all reduction operations are assumed to be non-associative.

This parameter is examined during every reduction operation. SeeCommutative and Associative
Reduction Operators, below.

• coll crossover : If set, define the maximum number of processes that will be used with a linear
algorithm. More than this number of processes may use some other kind of algorithm.

This parameter is only examined duringMPI INIT.

• coll reduce crossover : For reduction operations, the determination as to whether an algo-
rithm should be linear or not is not based on the number of process, but rather by the number of bytes
to be transferred by each process. If this parameter is set, it defines the maximum number of bytes

74 CHAPTER 9. AVAILABLE MPI MODULES

transferred by a single process with a linear algorithm. More than this number of bytes may result in
some other kind of algorithm.

This parameter is only examined duringMPI INIT.

Commutative and Associative Reduction Operators

MPI-1 defines that all built-in reduction operators are commutative. User-defined reduction operators can
specify whether they are commutative or not. The MPI standard makes no provisions for whether a reduction
operation is associative or not. For some operators and datatypes, this distinction is largely irrelevant (e.g.,
find the maximum in a set of integers). However, for operations involving the combination of floating point
numbers, associativity and commutativity matter. AnAdvice to Implementorsnote in MPI-1, section 4.9.1,
114:20, states:

It is strongly recommended thatMPI REDUCE be implemented so that the same result be
obtained whenever the function is applied on the same arguments, appearing in the same or-
der. Note that this may prevent optimizations that take advantage of the physical location of
processors.

Some implementations of the reduction operations may specifically take advantage of data locality, and
therefore assume that the reduction operator is associative. As such, LAM will always take the conserva-
tive approach to reduction operations and fall back to non-associative algorithms (e.g.,lam basic) for the
reduction operations unless specifically told to use associative (SMP-optimized) algorithms by setting the
SSI parametercoll base associative to 1.

9.3.3 Thelam basic Module

Module Summary
Name: lam basic
Kind: coll

Default SSI priority: 0
Checkpoint / restart: yes

The lam basic module provides simplistic algorithms for each of the MPI collectives that are layered
on top of point-to-point functionality.4 It can be used in any environment. Its priority is sufficiently low that
it will be chosen if no othercoll module is available.

Many of the algorithms are twofold: forN or less processes, linear algorithms are used. For more
thanN processes, binomial algorithms are used. No attempt is made to determine the locality of processes,
however – thelam basic module effectively assumes that there is equal latency between all processes. All
reduction operations are performed in a strictly-defined order; associativity is not assumed.

No algorithms are implemented for intercommunicators; invoking a collective on an intercommunicator
will result in a run-time MPI exception.

4The basic algorithms are the same that have been included in LAM/MPI since at least version 6.2.

9.4. CHECKPOINT/RESTART OF MPI JOBS 75

9.3.4 Thesmp Module

Module Summary
Name: smp
Kind: coll

Default SSI priority: 50
Checkpoint / restart: yes

The smp module is geared towards SMP nodes in a LAN. Heavily inspired by the MagPIe algo-
rithms [6], the smp module determines the locality of processes before setting up a dynamic structure in
which to perform the collective function. Although all communication is still layered on MPI point-to-point
functions, the algorithms attempt to maximize the use of on-node communication before communicating
with off-node processes. This results in lower overall latency for the collective operation.

The smp module assumes that there are only two levels of latency between all processes. As such, it
will only allow itself to be available for selection when there are at least two nodes in a communicator and
there are at least two processes on the same node.5

Only some of the collectives have been optimized for SMP environments. Table9.7shows which collec-
tive functions have been optimized, which were already optimal (from thelam basic module), and which
will eventually be optimized.

Special Notes

Since the goal of the SMP-optimized algorithms attempt to take advantage of data locality, it is strongly
recommended to maximize the proximity ofMPI COMM WORLD rank neighbors on each node. TheC
nomenclature tompirun can ensure this automatically.

Also, as a result of the data-locality exploitation, thecoll base associative parameter is highly
relevant – if it is not set to 1, thesmp module will fall back to thelam basic reduction algorithms.

9.4 Checkpoint/Restart of MPI Jobs

LAM supports the ability to involuntarily checkpoint and restart parallel MPI jobs. Due to the asynchronous
nature of the checkpoint/restart design, such jobs must run with a thread level of at leastMPI THREAD -
SERIALIZED. This allows the checkpoint/restart framework to interrupt the user’s job for a checkpoint
regardless of whether it is performing message passing functions or not in the MPI communications layer.

LAM does not provide checkpoint/restart functionality itself;cr SSI modules are used to invoke back-
end systems that save and restore checkpoints. The following notes apply to checkpointing parallel MPI
jobs:

• No special code is required in MPI applications to take advantage of LAM/MPI’s checkpoint/restart
functionality, although some limitations may be imposed (depending on the back-end checkpointing
system that is used).

• LAM’s checkpoint/restart functionalityonly involves MPI processes; the LAM universe is not check-
pointed. A LAM universe must be independently established before an MPI job can be restored.

• LAM does not yet support checkpointing/restarting MPI-2 applications. In particular, LAM’s behav-
ior is undefined when checkpointing MPI processes that invoke any non-local MPI-2 functionality
(including dynamic functions and IO).

5As a direct result,smp will never be selected forMPI COMM SELF.

76 CHAPTER 9. AVAILABLE MPI MODULES

MPI function Status

MPI ALLGATHER Not yet optimized for SMP environments; useslam basic
algorithm instead.

MPI ALLGATHERV Not yet optimized for SMP environments; useslam basic
algorithm instead.

MPI ALLREDUCE Optimized for SMP environments.
MPI ALLTOALL Identical tolam basic algorithm; already optimized for SMP

environments.
MPI ALLTOALLV Identical tolam basic algorithm; already optimized for SMP

environments.
MPI ALLTOALLW Not implemented.
MPI BARRIER Optimized for SMP environments.
MPI BCAST Optimized for SMP environments.
MPI EXSCAN Not implemented.
MPI GATHER Identical tolam basic algorithm; already optimized for SMP

environments.
MPI GATHERV Identical tolam basic algorithm; already optimized for SMP

environments.
MPI REDUCE Optimized for SMP environments.
MPI REDUCE SCATTER Not yet optimized for SMP environments; useslam basic

algorithm instead.
MPI SCAN Not yet optimized for SMP environments; useslam basic

algorithm instead.
MPI SCATTER Identical tolam basic algorithm; already optimized for SMP

environments.
MPI SCATTERV Identical tolam basic algorithm; already optimized for SMP

environments.

Table 9.7: Listing of MPI collective functions indicating which have been optimized for SMP environments.

9.4. CHECKPOINT/RESTART OF MPI JOBS 77

• Migration of restarted processes is available on a limited basis; thecrtcp RPI will start up properly
regardless of what nodes the MPI processes are re-started on, but other system-level resources may or
may not be restarted properly (e.g., open files, shared memory, etc.).

• Checkpoints can only be performed after all processes have invokedMPI INIT and before any process
has invokedMPI FINALIZE.

9.4.1 Selecting acr Module

Thecr framework coordinates with all other SSI modules to ensure that the entire MPI application is ready
to be checkpointed before the back-end system is invoked. Specifically, for a parallel job to be able to
checkpoint and restart, all the SSI modules that it uses must support checkpoint/restart capabilities.

All coll modules in the LAM/MPI distribution currently support checkpoint/restart capability because
they are layered on MPI point-to-point functionality – as long as the RPI module being used supports check-
point/restart, so do thecoll modules. However, only one RPI module currently supports checkpoint/restart:
crtcp. Attempting to checkpoint an MPI job when using any otherrpi module will result in undefined
behavior.

9.4.2 cr SSI Parameters

Thecr SSI parameter can be used to specify whichcr module should be used for an MPI job. An error will
occur if acr module is requested and anrpi or coll module cannot be found that supports checkpoint/restart
functionality.

Additionally, thecr base dir SSI parameter can be used to specify the directory where checkpoint
file(s) will be saved. If it is not set, and no default value was provided when LAM/MPI was configured (with
the--with-cr-file-dir flag) the user’s home directory is used.

9.4.3 Theblcr Module

Module Summary
Name: blcr
Kind: cr

Default SSI priority: 50
Checkpoint / restart: yes

Berkeley Lab’s Checkpoint/Restart (BLCR) [1] single-node checkpointer provides the capability for
checkpointing and restarting processes under Linux. Theblcr module, when used with checkpoint/restart
SSI modules, will invoke the BLCR system to save and restore checkpoints.

Overview

Theblcr module will only automatically be selected when the thread level isMPI THREAD SERIALIZED
and all selected SSI modules support checkpoint/restart functionality (see the SSI module selection algo-
rithm, Section9.1, page63). Theblcr module can be specifically selected by setting thecr SSI parameter
to the valueblcr . Manually selecting theblcr module will force the MPI thread level to be at leastMPI -
THREAD SERIALIZED.

78 CHAPTER 9. AVAILABLE MPI MODULES

Running a Checkpoint/Restart-Capable MPI Job

There are multiple ways to run a job with checkpoint/restart support:

• Use thecrtcp RPI, and invokeMPI INIT THREAD with a requested thread level ofMPI THREAD -
SERIALIZED. This will automatically make theblcr module available.� �
shell$mpirun C−ssi rpi crtcp mympi program� �

• Use thecrtcp RPI and manually select theblcr module:� �
shell$mpirun C−ssi rpi crtcp−ssi cr blcr mympi program� �

> (7.0.5)

Depending on the location of the BLCR shared library, it may be necessary to use theLD LIBRARY -
PATH environment variable to specify where it can be found. Specifically, if the BLCR library is not in the
default path searched by the linker, errors will occur at run time because it cannot be found. In such cases,
adding the directory where thelibcr.so* file(s) can be found to theLD LIBRARY PATH environment
variableon all nodes where the MPI application will executewill solve the problem. Note that this may
entail editing user’s “dot” files to augment theLD LIBRARY PATH variable.6 For example:� �
...edit user’s shell startup file to augment LDLIBRARYPATH...
shell$ lamboot hostfile
shell$mpirun C−ssi rpi crtcp−ssi cr blcr mympi program� �

Alternatively, the “-x ” option tompirun can be used to export theLD LIBRARY PATH environment
variable to all MPI processes. For example (Bourne shell and derrivates):� �
shell$LD LIBRARY PATH=/location/of/blcr/lib:$LDLIBRARY PATH
shell$export LD LIBRARY PATH
shell$mpirun C−ssi rpi crtcp−ssi cr blcr−x LD LIBRARY PATH my mpi program� �

For C shell and derivates:� �
shell% setenvLD LIBRARY PATH /location/of/blcr/lib:$LDLIBRARY PATH
shell% mpirun C−ssi rpi crtcp−ssi cr blcr−x LD LIBRARY PATH my mpi program� �⊥ (7.0.5)

Checkpointing and Restarting

Once a checkpoint-capable job is running, the BLCR commandcr checkpoint can be used to invoke a
checkpoint. Runningcr checkpoint with the PID ofmpirun will cause a context file to be created for
mpirun as well as a context file for each running MPI process. Before it is checkpointed,mpirun will
also create an application schema file to assist in restoring the MPI job. These files will all be created in the
directory specified by LAM/MPI’s configured default, thecr base dir , or the user’s home directory if
no default is specified.

The BLCRcr restart command can then be invoked with the PID and context file generated from
mpirun , which will restore the entire MPI job.

6Ensure to see Section4.1.1for details about which shell startup files should be edited. Also note that shell startup files are
only read when starting the LAM universe. Hence, if you change values in shell startup files, you will likely need to re-invoke the
lamboot command to put your changes into effect.

9.4. CHECKPOINT/RESTART OF MPI JOBS 79

Tunable Parameters

There are no tunable parameters to theblcr cr module.

Known Issues

BLCR has its own limitations (e.g., BLCR does not yet support saving and restoring file descriptors); see
the documentation included in BLCR for further information. Check the project’s main web site7 to find out
more about BLCR.

7http://ftg.lbl.gov/

http://ftg.lbl.gov/

80 CHAPTER 9. AVAILABLE MPI MODULES

Chapter 10

Debugging Parallel Programs

LAM/MPI supports multiple methods of debugging parallel programs. The following notes and observations
generally apply to debugging in parallel:

• Note that most debuggers require that MPI applications were compiled with debugging support en-
abled. This typically entails adding-g to the compile and link lines when building your MPI appli-
cation.

• Unless you specifically need it, it is not recommended to compile LAM with-g . This will allow you
to treat MPI function calls as atomic instructions.

• Even when debugging in parallel, it is possible that not all MPI processes will execute exactly the same
code. For example, “if” statements that are based upon a communicator’s rank of the calling process,
or other location-specific information may cause different execution paths in each MPI process.

10.1 Naming MPI Objects

LAM/MPI supports the MPI-2 functionsMPI <type> SET NAME andMPI <type> GET NAME, where
<type> can be:COMM, WIN, or TYPE. Hence, you can associate relevant text names with communica-
tors, windows, and datatypes (e.g., “6x13x12 molecule datatype”, “Local group reduction intracommuni-
cator”, “Spawned worker intercommunicator”). The use of these functions is strongly encouraged while
debugging MPI applications. Since they are constant-time, one-time setup functions, using these functions
likely does not impact performance, and may be safe to use in production environments, too.

The rationale for using these functions is to allow LAM (and supported debuggers, profilers, and other
MPI diagnostic tools) to display accurate information about MPI communicators, windows, and datatypes.
For example, whenever a communicator name is available, LAM will use it in relevant error messages; when
names are not available, communicators (and windows and types) are identified by index number, which –
depending on the application – may vary between successive runs. The TotalView parallel debugger will
also show communicator names (if available) when displaying the message queues.

10.2 TotalView Parallel Debugger

TotalView is a commercial debugger from Etnus that supports debugging MPI programs in parallel. That is,
with supported MPI implementations, the TotalView debugger can automatically attach to one or more MPI
processes in a parallel application.

81

82 CHAPTER 10. DEBUGGING PARALLEL PROGRAMS

LAM now supports basic debugging functionality with the TotalView debugger. Specifically, LAM
supports TotalView attaching to one or more MPI processes, as well as viewing the MPI message queues in
supported RPI modules.

This section provides some general tips and suggested use of TotalView with LAM/MPI. It isnot in-
tended to replace the TotalView documentation in any way.Be sure to consult the TotalView documenta-
tion for more information and details than are provided here.

Note: TotalView is licensed product provided by Etnus. You need to have TotalView installed properly
before you can use it with LAM.1

10.2.1 Attaching TotalView to MPI Processes

LAM/MPI does not need to be configured or compiled in any special way to allow TotalView to attach to
MPI processes.

You can attach TotalView to MPI processes started bympirun / mpiexec in following ways:

1. Use the-tv convenience argument when runningmpirun ormpiexec (this is the preferred method):� �
shell$mpirun−tv [...other mpirun arguments...]� �
For example:� �
shell$mpirun−tv C my mpi program arg1 arg2 arg3� �

2. Directly launchmpirun in TotalView (youcannotlaunchmpiexec in TotalView):� �
shell$totalview mpirun−a [...mpirun arguments...]� �
For example:� �
shell$totalview mpirun−a C mympi program arg1 arg2 arg3� �
Note the-a argument aftermpirun . This is necessary to tell TotalView that arguments following
“ -a ” belong tompirun and not TotalView.

Also note that the-tv convenience argument tompirun simply executes “totalview mpirun
-a ... ”; so both methods are essentially identical.

TotalView can either attach to all MPI processes inMPI COMM WORLD or a subset of them. The
controls for “partial attach” are in TotalView, not LAM. In TotalView 6.0.0 (analogous methods may work
for earlier versions of TotalView – see the TotalView documentation for more details), you need to set the
parallel launch preference to “ask.” In the root window menu:

1. Select File→ Preferences

2. Select the Parallel tab

3. In the “When a job goes parallel” box, select “Ask what to do”

4. Click on OK
1Refer tohttp://www.etnus.com/ for more information about TotalView.

http://www.etnus.com/

10.2. TOTALVIEW PARALLEL DEBUGGER 83

10.2.2 Suggested Use

Since TotalView support is started with thempirun command, TotalView will, by default, start by debug-
ging mpirun itself. While this may seem to be an annoying drawback, there are actually good reasons for
this:

• While debugging the parallel program, if you need to re-run the program, you can simply re-run the
application from within TotalView itself. There is no need to exit the debugger to run your parallel
application again.

• TotalView can be configured to automatically skip displaying thempirun code. Instead, TotalView
will recognize the command namedmpirun and start executing it immediately upon load. See below
for details.

There are two ways to start debugging the MPI application:

1. The preferred method is to have a$HOME/.tvdrc file that tells TotalView to skip past thempirun
code and automatically start the parallel program. Create or edit your$HOME/.tvdrc file to include
the following:� �
Set a variable to say what the MPI ‘‘starter’’ program is
setstarterprogram mpirun

Check if the newly loaded image is the starter program
and start it immediately if it is.
proc autorun starter{loadedid} {

global starterprogram
setexecutablename [TV::image get $loadedid name]
setfile component [file tail $executablename]

if {[string compare $filecomponent $starterprogram] == 0} {
puts ‘‘Automatically starting $filecomponent’’
dgo

}
}

Append this function to TotalView’s image load callbacks so that
TotalView run this program automatically.
dlappend TV::imageload callbacks autorun starter� �
Note that when using this method,mpirun is actually running in the debugger while you are de-
bugging your parallel application, even though it may not be obvious. Hence, when the MPI job
completes, you’ll be returned to viewingmpirun in the debugger.This is normal– all MPI pro-
cesses have exited; the only process that remains ismpirun . If you click “Go” again,mpirun will
launch the MPI job again.

2. Do not create the$HOME/.tvdrc file with the “auto run” functionality described in the previous
item, but instead simply click the “go” button when TotalView launches. This runs thempirun
command with the command line arguments, which will eventually launch the MPI programs and
allow attachment to the MPI processes.

84 CHAPTER 10. DEBUGGING PARALLEL PROGRAMS

When TotalView initially attaches to an MPI process, you will see the code forMPI INIT or one of
its sub-functions (which will likely be assembly code, unless LAM itself was compiled with debugging
information). You probably want to skip past the rest ofMPI INIT. In the Stack Trace window, click on
function which calledMPI INIT (e.g.,main) and set a breakpoint to line following call toMPI INIT. Then
click “Go”.

10.2.3 Limitations

The following limitations are currently imposed when debugging LAM/MPI jobs in TotalView:

1. Cannot attach to scripts: You cannot attach TotalView to MPI processes if they were launched by
scripts instead ofmpirun . Specifically, the following won’t work:� �
shell$mpirun−tv C script to launchfoo� �
But this will:� �
shell$mpirun−tv C foo� �
For that reason, sincempiexec is a script, although the-tv switch works withmpiexec (because
it will eventually invokempirun), you cannot launchmpiexec with TotalView.

2. TotalView needs to launch the TotalView server on all remote nodes in order to attach to remote
processes.

The command that TotalView uses to launch remote executables might be different than what LAM/MPI
uses. You may have to set this command explicitly and independently of LAM/MPI. For example, if
your local environment hasrsh disabled and only allowsssh , then you likely need to set the To-
talView remote server launch command to “ssh ”. You can set this internally in TotalView or with the
TVDSVRLAUNCHCMDenvironment variable (see the TotalView documentation for more information
on this).

3. The TotalView license must be able to be found on all nodes where you expect to attach the debugger.

Consult with your system administrator to ensure that this is setup properly. You may need to edit
your “dot” files (e.g.,.profile , .bashrc , .cshrc , etc.) to ensure that relevant environment
variable settings exist on all nodes when youlamboot .

4. It is always a good idea to letmpirun finish before you rerun or exit TotalView.

5. TotalView will not be able to attach to MPI programs when you executempirun with -s option.

This is because TotalView will not get the source code of your program on nodes other than the source
node. We advise you to either use a common filesystem or copy the source code and executable on all
nodes when using TotalView with LAM so that you can avoid the use ofmpirun ’s -s flag.

10.2.4 Message Queue Debugging

The TotalView debugger can show the sending, receiving, and unexepected message queues for many par-
allel applications. Note the following:

10.3. SERIAL DEBUGGERS 85

• The MPI-2 function for naming communicators (MPI COMM SET NAME) is strongly recommended
when using the message queue debugging functionality. For example,MPI COMM WORLD and
MPI COMM SELF are automatically named by LAM/MPI. Naming communicators makes it signif-
icantly easier to identify communicators of interest in the debugger.

Any communicator that is not named will be displayed as “--unnamed-- ”.

• Message queue debugging of applications is not currently supported for 64 bit executables. If you
attempt to use the message queue debugging functionality on a 64 bit executable, TotalView will
display a warning before disabling the message queue options.

• The lamd RPI does not support the message queue debugging functionality.

• LAM/MPI does not currently provide debugging support for dynamic processes (e.g.,MPI COMM -
SPAWN).

10.3 Serial Debuggers

LAM also allows the use of one or more serial debuggers when debugging a parallel program.

10.3.1 Lauching Debuggers

LAM allows the arbitrary execution of any executable in an MPI context as long as an MPI executable is
eventually launched. For example, it is common tompirun a debugger (or a script that launches a debugger
on some nodes, and directly runs the application on other nodes) since the debugger will eventually launch
the MPI process.

However, one must be careful when running programs on remote nodes that expect the use ofstdin
– stdin on remote nodes is redirected to/dev/null . For example, it is advantageous to export the
DISPLAY environment variable, and run a shell script that invokes anxterm with “gdb ” (for example)
running in it on each node. For example:� �
shell$mpirun C−x DISPLAY xterm−gdb.csh� �

Additionally, it may be desirable to only run the debugger on certain ranks inMPI COMM WORLD.
For example, with parallel jobs that include tens or hundreds of MPI processes, it is really only feasible to
attach debuggers to a small number of processes. In this case, a script may be helpful to launch debuggers
for some ranks inMPI COMM WORLD and directly launch the application in others.

The LAM environment variableLAMRANKcan be helpful in this situation. This variable is placed in
the environment before the target application is executed. Hence, it is visible to shell scripts as well as the
target MPI application. It is erroneous to alter the value of this variable.

Consider the following script:� �
#!/bin/csh−f

Which debugger to run
setdebugger=gdb

On MPI COMM WORLD rank 0, launch the process in the debugger.
Elsewhere, just launch the process directly.
if (‘‘$LAMRANK’’ == ‘‘0’’) then

86 CHAPTER 10. DEBUGGING PARALLEL PROGRAMS

echoLaunching $debugger on MPICOMM WORLD rank $LAMRANK
$debugger $∗

else
echoLaunching MPI executable on MPICOMM WORLD rank $LAMRANK
$∗

endif

All done
exit 0� �

This script can be executed viampirun to launch a debugger onMPI COMM WORLD rank 0, and
directly launch the MPI process in all other cases.

10.3.2 Attaching Debuggers

In some cases, it is not possible or desirable to start debugging a parallel application immediately. For
example, it may only be desirable to attach to certain MPI processes whose identity may not be known until
run-time.

In this case, the technique of attaching to a running process can be used (this functionality is supported
by many serial debuggers). Specifically, determine which MPI process you want to attach to. Then login to
the node where it is running, and use the debugger’s “attach” functionality to latch on to the running process.

10.4 Memory-Checking Debuggers

Memory-checking debuggers are an invaluable tool when debugging software (even parallel software). They
can provide detailed reports about memory leaks, bad memory accesses, duplicate/bad memory management
calls, etc. Some memory-checking debuggers include (but are not limited to): the Solaris Forte debugger
(including thebcheck command-line memory checker), the Purify software package, and the Valgrind
software package.

LAM can be used with memory-checking debuggers. However, LAM should be compiled with special
support for such debuggers. This is because in an attempt to optimize performance, there are many struc-
tures used internally to LAM that do not always have all memory positions initialized. For example, LAM’s
internalstruct nmsg is one of the underlying message constructs used to pass data between LAM pro-
cesses. But since thestruct nmsg is used in so many places, it is a generalized structure and contains
fields that are not used in every situation.

By default, LAM only initializes relevant struct members before using a structure. Using a structure
may involve sending the entire structure (including uninitialized members) to a remote host. This is not a
problem for LAM the remote host will also ignore the irrelevant struct members (depending on the specific
function being invoked). More to the point – LAM was designed this way to avoid setting variables that will
not be used; this is a slight optimization in run-time performance. Memory-checking debuggers, however,
will flag this behavior with “read from uninitialized” warnings.

The--with-purify option can be used with LAM’sconfigure script that will force LAM to zero
out all memory before it is used. This will eliminate the “read from uninitialized” types of warnings that
memory-checking debuggers will identify deep inside LAM. This option can only be specified when LAM
is configured; it is not possible to enable or disable this behavior at run-time. Since this option invokes a
slight overhead penalty in the run-time performance of LAM, it is not the default.

Chapter 11

Troubleshooting

Although LAM is a robust run-time environment, and its MPI layer is a mature software system, errors
do occur. Particularly when using LAM/MPI for the first time, some of the initial, per-user setup can be
confusing (e.g., setting up.rhosts or SSH keys for password-less remote logins). This section aims to
identify a few common problems and solutions.

Much more information can be found on the LAM FAQ on the main LAM web site.1

11.1 The LAM/MPI Mailing Lists

There are two mailing lists: one for LAM/MPI announcements, and another for questions and user discus-
sion of LAM/MPI.

11.1.1 Announcements

This is a low-volume list that is used to announce new version of LAM/MPI, important patches, etc. To
subscribe to the LAM announcement list, visit its list information page (you can also use that page to
unsubscribe or change your subscription options):

http://www.lam-mpi.org/mailman/listinfo.cgi/lam-announce

11.1.2 General Discussion / User Questions

This list is used for general questions and discussion of LAM/MPI. User can post questions, comments, etc.
to this list. Due to problems with spam, only subscribers are allowed to post to the list. To subscribe or
unsubscribe from the list, visit the list information page:

http://www.lam-mpi.org/mailman/listinfo.cgi/lam

After you have subscribed (and received a confirmation e-mail), you can send mail to the list at the
following address:

lam@lam-mpi.org

Be sure to include the following information in your e-mail:

1http://www.lam-mpi.org/faq/

87

http://www.lam-mpi.org/mailman/listinfo.cgi/lam-announce
http://www.lam-mpi.org/mailman/listinfo.cgi/lam
lam@lam-mpi.org
http://www.lam-mpi.org/faq/

88 CHAPTER 11. TROUBLESHOOTING

• Theconfig.log file from the top-level LAM directory, if available (please compress!).

• The output of thelaminfo command.

• A detaileddescription of what is failing. The more details that you provide, the better. E-mails saying
“My application doesn’t work!” will inevitably be answered with requests for more information about
exactly what doesn’t work; so please include as much detailed information in your initial e-mail as
possible.

NOTE: People tend to only reply to the list; if you subscribe, post, and then unsubscribe from the list,
you will likely miss replies.

Also please be aware thatlam@lam-mpi.org is a list that goes to several hundred people around the
world – it is not uncommon to move a high-volume exchange off the list, and only post the final resolution
of the problem/bug fix to the list. This prevents exchanges like “Did you try X?”, “Yes, I tried X, and it did
not work.”, “Did you try Y?”, etc. from cluttering up peoples’ inboxes.

11.2 LAM Run-Time Environment Problems

Some common problems with the LAM run-time environment are listed below.

11.2.1 Problems with thelamboot Command

Many first-time LAM users do not have their environment properly configured for LAM to boot properly.
Refer to Section4.4.2for the list of conditions that LAM requires to boot properly. User problems with
lamboot typically fall into one of the following categories:

• rsh /ssh is not setup properly for password-less logins to remote nodes.

Solution: Set uprsh /ssh properly for password-less remote logins. Consult local documentation
or internet tutorials for how to setup$HOME/.rhosts and SSH keys. Note that the LAM Team
STRONGLY discourages the use of+ in .rhosts or host.equiv files!

• rsh /ssh prints something onstderr .

Solution: Clean up system or user “dot” files so that nothing is printed onstderr during a remote
login.

• A LAM daemon is unable to open a connection back tolamboot .

Solution: Many Linux distributions ship with firewalls enabled. LAM/MPI uses random TCP ports
to communicate, and therefore firewall support must be either disabled or opened between machines
that will be using LAM/MPI.

• LAM is unable to open a session directory.

Solution: LAM needs to use a per-user, per-session temporary directory, typically located under
/tmp (see Section12.8, page94). LAM must be able to read/write in this session directory; check
permissions in this tree.

• LAM is unable to find the current host in the boot schema.

Solution: LAM can only boot a universe that includes the current node. If the current node is not
listed in the hostfile, or is not listed by a name that can be resolved and identified as the current node,
lamboot (and friends) will abort.

lam@lam-mpi.org

11.3. MPI PROBLEMS 89

• LAM is unable to resolve all names in the boot schema.

Solution: All names in the boot schema must be resolvable by the boot SSI module that is being
used. This typically means that there end up being IP hostnames that must be resolved to IP addresses.
Resolution can occur by any valid OS mechanism (e.g., through DNS, local file lookup, etc.). Note
that the name “localhost ” (or any address that resolves to 127.0.0.1) cannot be used in a boot
schema that includes more than one host – otherwise the other nodes in the resulting LAM universe
will not be able to contact that host.

11.3 MPI Problems

For the most part, LAM implements the MPI standard similarly to other MPI implementations. Hence, most
MPI programmers are not too surprised by how LAM handles various errors, etc. However, there are some
cases that LAM handles in its own unique fashion. In these cases LAM tries to display a helpful message
discussing what happened.

Here’s some more background on a few of the messages:

• “One of the processes started by mpirun has exited with a nonzero exit code.”

This means that at least one MPI process has exited after invokingMPI INIT, but before invoking
MPI FINALIZE. This is therefore an error, and LAM will abort the entire MPI application. The last
line of the error message indicates the PID, node, and exit status of the failed process.

• “MPI <function> : process in local group is dead (rank<N>, MPI COMM WORLD)”

This means that some MPI function tried to communicate with a peer MPI process and discovered that
the peer process is dead. Common causes of this problem include attempting to communicate with
processes that have failed (which, in some cases, won’t generate the “One of the processes started by
mpirun has exited...” messages), or have already invokedMPI FINALIZE. Communication should
not be initiated that could involve processes that have already invokedMPI FINALIZE. This may
include usingMPI ANY SOURCE or collectives on communicators that include processes that have
already finalized.

90 CHAPTER 11. TROUBLESHOOTING

Chapter 12

Miscellaneous

This chapter covers a variety of topics that don’t conveniently fit into other chapters.

12.1 Singleton MPI Processes

It is possible to run an MPI process without thempirun or mpiexec commands – simply run the program
as one would normally launch a serial program:� �
shell$my mpi program� �

Doing so will create anMPI COMM WORLD with a single process. This process can either run by
itself, or spawn or connect to other MPI processes and become part of a larger MPI jobs using the MPI-2
dynamic function calls. A LAM RTE must be running on the local node, as with jobs started withmpirun .

12.2 MPI-2 I/O Support

MPI-2 I/O support is provided through the ROMIO package [16, 17]. Since support is provided through a
third party package, its integration with LAM/MPI is not “complete.” Specifically, everywhere the MPI-2
standard specifies an argument of typeMPI Request, ROMIO’s provided functions expect an argument of
typeMPIO Request.

ROMIO includes its own documentation and listings of known issues and limitations. See theREADME
file in the ROMIO directory in the LAM distribution.

12.3 Fortran Process Names

Since Fortran does not portably provide the executable name of the process (similar to the way that C
programs get an array ofargv), thempitask command lists the name “LAM MPI Fortran program” by
default for MPI programs that used the Fortran binding forMPI INIT or MPI INIT THREAD.

The environment variableLAMMPI PROCESSNAMEcan be used to override this behavior. Setting this
environment variable before invokingmpirun will causempitask to list that name instead of the default
title. This environment variable only works for processes that invoke the Fortran binding forMPI INIT or
MPI INIT THREAD.

91

92 CHAPTER 12. MISCELLANEOUS

12.4 MPI Thread Support

LAM currently implements support forMPI THREAD SINGLE, MPI THREAD FUNNELED, andMPI -
THREAD SERIALIZED. The constantMPI THREAD MULTIPLE is provided, although LAM will never
returnMPI THREAD MULTIPLE in theprovided argument toMPI INIT THREAD.

LAM makes no distinction betweenMPI THREAD SINGLE andMPI THREAD FUNNELED. When
MPI THREAD SERIALIZED is used, a global lock is used to ensure that only one thread is inside any MPI
function at any time.

12.4.1 Thread Level

Selecting the thread level for an MPI job is best described in terms of the two parameters passed toMPI -
INIT THREAD: requested andprovided . requested is the thread level that the user application
requests, whileprovided is the thread level that LAM will run the application with.

• If MPI INIT is used to initialize the job,requested will implicitly be MPI THREAD SINGLE.
However, if theLAMMPI THREADLEVEL environment variable is set to one of the values in Ta-
ble12.1, the corresponding thread level will be used forrequested .

• If MPI INIT THREAD is used to initialized the job, therequested thread level is the first thread
level that the job will attempt to use. There is currently no way to specify lower or upper bounds to
the thread level that LAM will use.

The resulting thread level is largely determined by the SSI modules that will be used in an MPI
job; each module must be able to support the target thread level. A complex algorithm is used to
attempt to find a thread level that is acceptable to all SSI modules. Generally, the algorithm starts
at requested and works backwards towardsMPI THREAD SINGLE looking for an acceptable
level. However, any module mayincreasethe thread level under test if it requires it. At the end of this
process, if an acceptable thread level is not found, the MPI job will abort.

Value Meaning

undefined MPI THREAD SINGLE
0 MPI THREAD SINGLE
1 MPI THREAD FUNNELED
2 MPI THREAD SERIALIZED
3 MPI THREAD MULTIPLE

Table 12.1: Valid values for theLAMMPI THREADLEVELenvironment variable.

Also note that certain SSI modules require higher thread support levels than others. For example, any
checkpoint/restart SSI module will require a minimum ofMPI THREAD SERIALIZED, and will attempt
to adjust the thread level upwards as necessary (if that CR module will be used during the job).

Hence, usingMPI INIT to initialize an MPI job does not imply that the provided thread level will be
MPI THREAD SINGLE.

12.5 MPI-2 Name Publishing

LAM supports the MPI-2 functionsMPI PUBLISH NAME andMPI UNPUBLISH NAME for publish-
ing and unpublishing names, respectively. Published names are stored within the LAM daemons, and are

12.6. INTEROPERABLE MPI (IMPI) SUPPORT 93

therefore persistent, even when the MPI process that published them dies.
As such, it is important for correct MPI programs to unpublish their names before they terminate. How-

ever, if stale names are left in the LAM universe when an MPI process terminates, thelamclean command
can be used to cleanall names from the LAM RTE.

12.6 Interoperable MPI (IMPI) Support

The IMPI extensions are still considered experimental, and are disabled by default in LAM. They must be
enabled when LAM is configured and built (see the Installation Guide file for details).

12.6.1 Purpose of IMPI

The Interoperable Message Passing Interface (IMPI) is a standardized protocol that enables different MPI
implementations to communicate with each other. This allows users to run jobs that utilize different hard-
ware, but still use the vendor-tuned MPI implementation on each machine. This would be helpful in situa-
tions where the job is too large to fit in one system, or when different portions of code are better suited for
different MPI implementations.

IMPI defines only the protocols necessary between MPI implementations; vendors may still use their
own high-performance protocols within their own implementations.

Terms that are used throughout the LAM / IMPI documentation include: IMPI clients, IMPI hosts, IMPI
processes, and the IMPI server. See the IMPI section of the the LAM FAQ for definitions of these terms on
the LAM web site.1

For more information about IMPI and the IMPI Standard, see the main IMPI web site.2.
Note that the IMPI standard only applies to MPI-1 functionality. Using non-local MPI-2 functions on

communicators with ranks that live on another MPI implementation will result in undefined behavior (read:
kaboom). For example,MPI COMM SPAWN will certainly fail, butMPI COMM SET NAME works fine
(because it is a local action).

12.6.2 Current IMPI functionality

LAM currently implements a subset of the IMPI functionality:

• Startup and shutdown

• All MPI-1 point-to-point functionality

• Some of the data-passing collectives:MPI ALLREDUCE, MPI BARRIER, MPI BCAST, MPI -
REDUCE

LAM does not implement the following on communicators with ranks that reside on another MPI im-
plementation:

• MPI PROBE andMPI IPROBE

• MPI CANCEL

• All data-passing collectives that are not listed above

• All communicator constructor/destructor collectives (e.g.,MPI COMM SPLIT, etc.)
1http://www.lam-mpi.org/faq/
2http://impi.nist.gov/

http://www.lam-mpi.org/faq/
http://impi.nist.gov/

94 CHAPTER 12. MISCELLANEOUS

12.6.3 Running an IMPI Job

Running an IMPI job requires the use of an IMPI server. An open source, freely-available server is avail-
able.3

As described in the IMPI standard, the first step is to launch the IMPI server with the number of expected
clients. The open source server from above requires at least one authentication mechanism to be specified
(“none” or “key”). For simplicity, these instructions assume that the “none” mechanism will be used. Only
one IMPI server needs to be launched per IMPI job, regardless of how many clients will connect. For this
example, assume that there will be 2 IMPI clients; client 0 will be run in LAM/MPI, and client 1 will be run
elsewhere.� �
shell$export IMPI AUTH NONE=
shell$ impi server−server 2−auth 0
10.0.0.32:9283� �

The IMPI server must be left running for the duration of the IMPI job. The string that the IMPI server
gives as output (“10.0.0.32:9283”, in this case) must be given tompirun when starting the LAM process
that will run in IMPI:� �
shell$mpirun−client 0 10.0.0.32:9283 C mympi program� �

This will run the MPI program in the local LAM universe and connect it to the IMPI server. From there,
the IMPI protocols will take over and join this program to all other IMPI clients.

Note that LAM will launch an auxiliary “helper” MPI program namedimpid that will last for the
duration of the IMPI job. It acts as a proxy to the other IMPI processes, and should not be manually killed.
It will die on its own accord when the IMPI job is complete. If something goes wrong, it can be killed with
the lamclean command, just like any other MPI process.

12.7 Batch Queueing System Support

LAM is now aware of some batch queueing systems. Support is currently included for PBS, LSF, and
Clubmask-based systems. There is also a generic functionality that allows users of other batch queue systems
to take advantages of this functionality.

• When running under a supported batch queue system, LAM will take precautions to isolate itself from
other instances of LAM in concurrent batch jobs. That is, the multiple LAM instances from the same
user can exist on the same machine when executing in batch. This allows a user to submit as many
LAM jobs as necessary, and even if they end up running on the same nodes, alamclean in one job
will not kill MPI applications in another job.

• This behavior isonly exhibited under a batch environment. Other batch systems can easily be sup-
ported – let the LAM Team know if you’d like to see support for others included. Manually setting the
environment variableLAMMPI SESSIONSUFFIX on the node wherelamboot is run achieves
the same ends.

12.8 Location of LAM’s Session Directory

By default, LAM will create a temporary per-user session directory in the following directory:

3http://www.osl.iu.edu/research/impi/

http://www.osl.iu.edu/research/impi/

12.9. SIGNAL CATCHING 95

<tmpdir>/lam-<username>@<hostname>[-<session suffix>]
Each of the components is described below:

<tmpdir> : LAM will set the prefix used for the session directory based on the following search order:

1. The value of theLAMMPI SESSIONPREFIX environment variable

2. The value of theTMPDIR environment variable

3. /tmp/

It is important to note that (unlikeLAMMPI SESSIONSUFFIX), the environment variables for
determining<tmpdir> must be set on each node (although they do not necessarily have to be the
same value).<tmpdir> must exist beforelamboot is run, orlamboot will fail.

<username> : The user’s name on that host.

<hostname> : The hostname.

<session suffix> : LAM will set the suffix (if any) used for the session directory based on the fol-
lowing search order:

1. The value of theLAMMPI SESSIONSUFFIX environment variable.

2. If running under a supported batch system, a unique session ID (based on information from the
batch system) will be used.

LAMMPI SESSIONSUFFIX and the batch information only need to be available on the node from
which lamboot is run. lamboot will propagate the information to the other nodes.

12.9 Signal Catching

LAM MPI now catches the signals SEGV, BUS, FPE, and ILL. The signal handler terminates the application.
This is useful in batch jobs to help ensure thatmpirun returns if an application process dies. To disable the
catching of signals use the-nsigs option tompirun .

96 CHAPTER 12. MISCELLANEOUS

Bibliography

[1] Jason Duell, Paul Hargrove, and Eric Roman. The Design and Implementation of Berkeley Lab’s
Linux Checkpoint/Restart, 2002.

[2] Al Geist, William Gropp, Steve Huss-Lederman, Andrew Lumsdaine, Ewing Lusk, William Saphir,
Tony Skjellum, and Marc Snir. MPI-2: Extending the Message-Passing Interface. In Luc Bouge, Pierre
Fraigniaud, Anne Mignotte, and Yves Robert, editors,Euro-Par ’96 Parallel Processing, number 1123
in Lecture Notes in Computer Science, pages 128–135. Springer Verlag, 1996.

[3] William Gropp, Steven Huss-Lederman, Andrew Lumsdaine, Ewing Lusk, Bill Nitzberg, William
Saphir, and Marc Snir.MPI — The Complete Reference: Volume 2, the MPI-2 Extensions. MIT Press,
1998.

[4] William Gropp, Ewing Lusk, and Anthony Skjellum.Using MPI: Portable Parallel Programming
with the Message Passing Interface. MIT Press, 1994.

[5] William Gropp, Ewing Lusk, and Rajeev Thakur.Using MPI-2: Advanced Features of the Message
Passing Interface. MIT Press, 1999.

[6] Thilo Kielmann, Henri E. Bal, and Sergei Gorlatch. Bandwidth-efficient Collective Communication
for Clustered Wide Area Systems. InInternational Parallel and Distributed Processing Symposium
(IPDPS 2000), pages 492–499, Cancun, Mexico, May 2000. IEEE.

[7] Message Passing Interface Forum. MPI: A Message Passing Interface. InProc. of Supercomputing
’93, pages 878–883. IEEE Computer Society Press, November 1993.

[8] Sriram Sankaran, Jeffrey M. Squyres, Brian Barrett, and Andrew Lumsdaine. Checkpoint-restart sup-
port system services interface (SSI) modules for LAM/MPI. Technical Report TR578, Indiana Uni-
versity, Computer Science Department, 2003.

[9] Marc Snir, Steve W. Otto, Steve Huss-Lederman, David W. Walker, and Jack Dongarra.MPI: The
Complete Reference. MIT Press, Cambridge, MA, 1996.

[10] Jeffrey M. Squyres, Brian Barrett, and Andrew Lumsdaine. Boot system services interface (SSI)
modules for LAM/MPI. Technical Report TR576, Indiana University, Computer Science Department,
2003.

[11] Jeffrey M. Squyres, Brian Barrett, and Andrew Lumsdaine. MPI collective operations system ser-
vices interface (SSI) modules for LAM/MPI. Technical Report TR577, Indiana University, Computer
Science Department, 2003.

97

98 BIBLIOGRAPHY

[12] Jeffrey M. Squyres, Brian Barrett, and Andrew Lumsdaine. Request progression interface (RPI) sys-
tem services interface (SSI) modules for LAM/MPI. Technical Report TR579, Indiana University,
Computer Science Department, 2003.

[13] Jeffrey M. Squyres, Brian Barrett, and Andrew Lumsdaine. The system services interface (SSI) to
LAM/MPI. Technical Report TR575, Indiana University, Computer Science Department, 2003.

[14] The LAM/MPI Team.LAM/MPI Installation Guide. Open Systems Laborator, Pervasive Technology
Labs, Indiana University, Bloomington, IN, 7.0 edition, May 2003.

[15] The LAM/MPI Team.LAM/MPI User’s Guide. Open Systems Laborator, Pervasive Technology Labs,
Indiana University, Bloomington, IN, 7.0 edition, May 2003.

[16] Rajeev Thakur, William Gropp, and Ewing Lusk. Data sieving and collective I/O in ROMIO. In
Proceedings of the 7th Symposium on the Frontiers of Massively Parallel Computation, pages 182–
189. IEEE Computer Society Press, February 1999.

[17] Rajeev Thakur, William Gropp, and Ewing Lusk. On implementing MPI-IO portably and with high
performance. InProceedings of the 6th Workshop on I/O in Parallel and Distributed Systems, pages
23–32. ACM Press, May 1999.

Index

.bash login file, 18

.bash profile file, 18

.bashrc file, 18

.cshrc file, 18

.login file, 18

.profile file, 18

.rhosts file, 87

.tcshrc file, 18
$HOME/.tvdrc file, 83

AFS filesystem,15

batch queue systems,94
OpenPBS / PBS Pro (TM) boot SSI module,

61
Berkeley Lab Checkpoint/Restart single-node check-

pointer,77
blcr checkpoint/restart SSI module,77
boot schema,55
boot SSI modules,55–62

bproc, 57
globus, 59
rsh (rsh /ssh), 60
tm (PBS),61

boot SSI parameter,58–61
boot base promisc SSI parameter,57
boot bproc priority SSI parameter,58
boot globus priority SSI parameter,60
boot rsh agent SSI parameter,14, 61
boot rsh priority SSI parameter,61
boot rsh username SSI parameter,61
boot tm priority SSI parameter,62
booting the LAM run-time environment,20
bproc boot SSI module,57

case-insensitive filesystem,15
checkpoint/restart SSI modules,75–79

blcr, 77
selection process,77

Clubmask,seebatch queue systems

coll SSI parameter,73
coll base associative SSI parameter,73–

75
coll crossover SSI parameter,73
coll reduce crossover SSI parameter,73
collective SSI modules,72–75

lam basic, 74
selection process,73
smp, 75

commands
cr checkpoint , 78
cr restart , 78
globus-job-run , 59
hcc (deprecated),47
hcp (deprecated),47
hf77 (deprecated),47
lamboot , 20, 21, 41, 46, 55, 61, 78, 88, 94,

95
lamclean , 27, 43, 93
lamexec , 43
lamgrow , 43
lamhalt , 27, 44
laminfo , 14, 15, 20, 29, 34, 44, 55, 64, 72,

88
lamnodes , 22, 46
lamshrink , 46
mpic++ , 15, 22, 33, 46
mpiCC, 15, 22, 24, 33, 46
mpicc , 15, 22, 23, 33, 46
mpiexec , 14, 26, 29, 47, 82
mpif77 , 22, 24, 33, 46
mpimsg , 49
mpirun , 25, 49, 56, 78, 82, 85, 91, 95
mpitask , 14, 27, 52, 91
pbs demux, 62
recon , 52
rsh , 55
ssh , 55
tping , 52

99

100 INDEX

wipe , 27, 53
compiling MPI programs,22
configure flags

--with-cr-file-dir , 77
--with-purify , 86
--with-rsh , 15

cr SSI parameter,77
cr base dir SSI parameter,77, 78
cr checkpoint command,78
cr restart command,78

debuggers,81–86
attaching,86
launching,85
memory-checking,86
serial,85
TotalView,82

DISPLAY environment variable,85
dynamic environments,16
dynamic name publishing,seepublished names

environment variables
DISPLAY, 85
GLOBUSLOCATION, 59
LAMMPI PROCESSNAME, 91
LAMMPI SESSIONPREFIX, 42, 95
LAMMPI SESSIONSUFFIX, 14, 42, 59, 94,

95
LAMMPI SOCKETSUFFIX (deprecated),14
LAMMPI THREADLEVEL, 63, 92
LAMHOME, 57
LAMRANK, 85
LAMRSH(deprecated),14
LD LIBRARY PATH, 78
PATH, 59
TMPDIR, 14, 42, 95
TVDSVRLAUNCHCMD, 84

files
.bash login , 18
.bash profile , 18
.bashrc , 18
.cshrc , 18
.login , 18
.profile , 18
.rhosts , 87
.tcshrc , 18
$HOME/.tvdrc , 83

filesystem notes
AFS,15
case-insensitive filesystems,15
NFS,15

fortran process names,91

globus boot SSI module,59
globus-job-run command,59
GLOBUSLOCATIONenvironment variable,59

hcc command (deprecated),47
hcp command (deprecated),47
hf77 command (deprecated),47
hostfile,seeboot schema

I/O support,seeROMIO
IMPI, 93

running jobs,94
server,94
supported functionality,93

Interoperable MPI,seeIMPI

LAMMPI PROCESSNAMEenvironment variable,
91

LAMMPI SESSIONPREFIX environment vari-
able,42, 95

LAMMPI SESSIONSUFFIX environment vari-
able,14, 42, 59, 94, 95

LAMMPI SOCKETSUFFIX environment variable
(deprecated),14

LAMMPI THREADLEVELenvironment variable,
63, 92

lamboot command,20, 41, 46, 55, 61, 78, 88,
94, 95

boot schema file,55
common problems and solutions,21
conditions for success,20

lamclean command,27, 43, 93
lamexec command,43
lamgrow command,43
lamhalt command,27, 44
LAMHOMEenvironment variable,57
laminfo command,14, 15, 20, 29, 34, 44, 55,

64, 72, 88
lamnodes command,22, 46
LAMRANKenvironment variable,85
LAMRSHenvironment variable (deprecated),14
lamshrink command,46

INDEX 101

lamssi(7) manual page,19
lamssi boot(7) manual page,19
lamssi coll(7) manual page,19
lamssi cr(7) manual page,19
lamssi rpi(7) manual page,19
LD LIBRARY PATHenvironment variable,78
Load Sharing Facility,seebatch queue systems
LSF,seebatch queue systems

machinefile,seeboot schema
manual pages,19

lamssi(7) , 19
lamssi boot(7) , 19
lamssi coll(7) , 19
lamssi cr(7) , 19
lamssi rpi(7) , 19

Matlab,16
MEX functions,16
Microsoft Windows,16
MPI and threads,seethreads and MPI
MPI attribute keyvals

LAM MPI SSI COLL, 73
MPI collective modules,seecollective SSI mod-

ules
MPI constants

MPI ANY SOURCE, 89
MPI COMM SELF, 14, 30, 36, 73, 75, 85
MPI COMM WORLD, 36, 39, 48, 50, 51,

73, 75, 82, 85, 86, 91
MPI ERR KEYVAL, 30
MPI STATUS IGNORE, 30
MPI STATUSES IGNORE, 30
MPI THREAD FUNNELED, 14, 92
MPI THREAD MULTIPLE, 14, 92
MPI THREAD SERIALIZED, 14, 75, 77, 78,

92
MPI THREAD SINGLE, 14, 92

MPI datatypes
MPI DARRAY, 34
MPI LONG LONG INT, 31
MPI UNSIGNED LONG LONG, 31
MPI WCHAR, 31

MPI functions
MPI ACCUMULATE, 32
MPI ALLGATHER, 76
MPI ALLGATHERV, 76
MPI ALLOC MEM, 31, 66, 67

MPI ALLREDUCE, 76, 93
MPI ALLTOALL, 76
MPI ALLTOALLV, 76
MPI ALLTOALLW, 32, 76
MPI BARRIER, 76, 93
MPI BCAST, 76, 93
MPI CANCEL, 29, 93
MPI CLOSE PORT, 32
MPI COMM ACCEPT, 32
MPI COMM C2F, 31
MPI COMM CONNECT, 32
MPI COMM CREATE ERRHANDLER, 31,

33
MPI COMM CREATE KEYVAL, 33
MPI COMM DELETE ATTR, 33
MPI COMM DISCONNECT, 32
MPI COMM F2C, 31
MPI COMM FREE KEYVAL, 33
MPI COMM GET ATTR, 33
MPI COMM GET ERRHANDLER, 31, 33
MPI COMM GET NAME, 33
MPI COMM GET PARENT, 32
MPI COMM JOIN, 32
MPI COMM SET ATTR, 33
MPI COMM SET ERRHANDLER, 31, 33
MPI COMM SET NAME, 33, 85, 93
MPI COMM SPAWN, 14, 32, 66, 85, 93
MPI COMM SPAWN MULTIPLE, 32
MPI COMM SPLIT, 93
MPI EXSCAN, 32, 76
MPI FINALIZE, 14, 30, 36, 77, 89
MPI FINALIZED, 30
MPI FREE MEM, 31, 66, 67
MPI GATHER, 76
MPI GATHERV, 76
MPI GET, 32
MPI GET ADDRESS, 31
MPI GET VERSION, 30
MPI GROUP C2F, 31
MPI GROUP F2C, 31
MPI INFO C2F, 31
MPI INFO CREATE, 30
MPI INFO DELETE, 30
MPI INFO DUP, 30
MPI INFO F2C, 31
MPI INFO FREE, 30
MPI INFO GET, 30

102 INDEX

MPI INFO GET NKEYS, 30
MPI INFO GET NTHKEY, 30
MPI INFO GET VALUELEN, 30
MPI INFO SET, 30
MPI INIT, 30, 36, 51, 66, 73, 74, 77, 84, 89,

91, 92
MPI INIT THREAD, 33, 63, 78, 91, 92
MPI IPROBE, 93
MPI IRECV, 29
MPI IS THREAD MAIN, 33
MPI LOOKUP NAME, 32
MPI OPEN PORT, 32
MPI PACK, 32
MPI PACK EXTERNAL, 32
MPI PACK EXTERNAL SIZE, 32
MPI PROBE, 93
MPI PUBLISH NAME, 32, 92
MPI PUT, 32
MPI QUERY THREAD, 33
MPI RECV, 52
MPI REDUCE, 74, 76, 93
MPI REDUCE SCATTER, 76
MPI REQUEST C2F, 31
MPI REQUEST F2C, 31
MPI REQUEST GET STATUS, 30
MPI SCAN, 76
MPI SCATTER, 76
MPI SCATTERV, 76
MPI STATUS C2F, 31
MPI STATUS F2C, 31
MPI TYPE C2F, 31
MPI TYPE CREATE DARRAY, 31
MPI TYPE CREATE HINDEXED, 31
MPI TYPE CREATE HVECTOR, 31
MPI TYPE CREATE INDEXED BLOCK, 30
MPI TYPE CREATE KEYVAL, 33
MPI TYPE CREATE RESIZED, 31
MPI TYPE CREATE STRUCT, 31
MPI TYPE CREATE SUBARRAY, 31
MPI TYPE DELETE ATTR, 33
MPI TYPE DUP, 33
MPI TYPE F2C, 31
MPI TYPE FREE KEYVAL, 33
MPI TYPE GET ATTR, 33
MPI TYPE GET CONTENTS, 33
MPI TYPE GET ENVELOPE, 33
MPI TYPE GET EXTENT, 31, 33

MPI TYPE GET NAME, 33
MPI TYPE GET TRUE EXTENT, 31, 33
MPI TYPE SET ATTR, 33
MPI TYPE SET NAME, 33
MPI UNPACK, 32
MPI UNPACK EXTERNAL, 32
MPI UNPUBLISH NAME, 32, 92
MPI WIN C2F, 31
MPI WIN COMPLETE, 32
MPI WIN CREATE, 32
MPI WIN CREATE ERRHANDLER, 31, 33
MPI WIN CREATE KEYVAL, 33
MPI WIN DELETE ATTR, 33
MPI WIN F2C, 31
MPI WIN FENCE, 32
MPI WIN FREE, 32
MPI WIN FREE KEYVAL, 33
MPI WIN GET ATTR, 33
MPI WIN GET ERRHANDLER, 31, 33
MPI WIN GET GROUP, 32
MPI WIN GET NAME, 33
MPI WIN POST, 32
MPI WIN SET ATTR, 33
MPI WIN SET ERRHANDLER, 31, 33
MPI WIN SET NAME, 33
MPI WIN START, 32
MPI WIN WAIT, 32
MPIL COMM SPAWN, 32

MPI types
MPI::BOOL, 34
MPI::COMPLEX, 34
MPI::DOUBLE COMPLEX, 34
MPI::LONG DOUBLE COMPLEX, 34
MPI File, 31
MPI Info, 30, 32
MPI Request, 91
MPI Status, 30, 33
MPIO Request, 91

MPI-2 I/O support,seeROMIO
mpic++ command,15, 22, 33, 46
mpiCC command,15, 22, 24, 33, 46
mpicc command,15, 22, 23, 33, 46
mpiexec command,14, 26, 29, 47, 82
mpif77 command,22, 24, 33, 46
mpimsg command,49
mpirun command,25, 49, 56, 78, 82, 85, 91, 95
mpitask command,14, 27, 52, 91

INDEX 103

fortran process names,91

name publising,seepublished names
NFS filesystem,15

OpenPBS,seebatch queue systems

PATHenvironment variable,59
PBS,seebatch queue systems
PBS Pro,seebatch queue systems
pbs demux command,62
Portable Batch System,seebatch queue systems
published names,92

recon command,52
release notes,13–16
ROMIO, 91
rpi SSI parameter,64
rpi crtcp priority SSI parameter,65
rpi crtcp short SSI parameter,65
rpi gm maxport SSI parameter,66
rpi gm nopin SSI parameter,66
rpi gm port SSI parameter,66
rpi gm priority SSI parameter,66
rpi gm shortmsglen SSI parameter,66, 67
rpi gm tinymsglen SSI parameter,66, 67
rpi lamd priority SSI parameter,69
rpi ssi sysv shmmaxalloc SSI parameter,

70
rpi ssi sysv shmpoolsize SSI parameter,

70
rpi ssi sysv short SSI parameter,69
rpi sysv pollyield SSI parameter,70
rpi sysv priority SSI parameter,70
rpi sysv shmmaxalloc SSI parameter,70
rpi sysv shmpoolsize SSI parameter,70
rpi sysv short SSI parameter,70
rpi tcp priority SSI parameter,71
rpi tcp short SSI parameter,70–72
rpi usysv pollyield SSI parameter,72
rpi usysv priority SSI parameter,72
rpi usysv readlockpoll SSI parameter,72
rpi usysv shmmaxalloc SSI parameter,72
rpi usysv shmpoolsize SSI parameter,72
rpi usysv short SSI parameter,72
rpi usysv writelockpoll SSI parameter,72
RPMs,14
rsh (ssh) boot SSI module,60

rsh command,55
running MPI programs,24

sample MPI program
C, 23
C++,23
Fortran,24

serial debuggers,85
session directory,94
shell setup

Bash/Bourne shells,19
C shell (and related),19

signals,95
ssh command,55
SSI

module types,35
overview,35–38
parameter overview,36

SSI boot modules,seeboot SSI modules
SSI collective modules,seecollective SSI mod-

ules
SSI parameters

boot , 58–61
bproc value,58
globus value,59, 60
rsh value,61
tm value,61

boot base promisc , 57
boot bproc priority , 58
boot globus priority , 60
boot rsh agent , 14, 61
boot rsh priority , 61
boot rsh username , 61
boot tm priority , 62
coll , 73
coll base associative , 73–75
coll crossover , 73
coll reduce crossover , 73
cr , 77

blcr value,77
cr base dir , 77, 78
rpi , 64
rpi crtcp priority , 65
rpi crtcp short , 65
rpi gm maxport , 66
rpi gm nopin , 66
rpi gm port , 66

104 INDEX

rpi gm priority , 66
rpi gm shortmsglen , 66, 67
rpi gm tinymsglen , 66, 67
rpi lamd priority , 69
rpi ssi sysv shmmaxalloc , 70
rpi ssi sysv shmpoolsize , 70
rpi ssi sysv short , 69
rpi sysv pollyield , 70
rpi sysv priority , 70
rpi sysv shmmaxalloc , 70
rpi sysv shmpoolsize , 70
rpi sysv short , 70
rpi tcp priority , 71
rpi tcp short , 70–72
rpi usysv pollyield , 72
rpi usysv priority , 72
rpi usysv readlockpoll , 72
rpi usysv shmmaxalloc , 72
rpi usysv shmpoolsize , 72
rpi usysv short , 72
rpi usysv writelockpoll , 72

System Services Interface,seeSSI

threads and MPI,92
tm boot SSI module,61
TMPDIRenvironment variable,14, 42, 95
TotalView parallel debugger,82
tping command,52
TVDSVRLAUNCHCMDenvironment variable,84

Windows,seeMicrosoft Windows
wipe command,27, 53
--with-cr-file-dir configure flag,77
--with-purify configure flag,86
--with-rsh configure flag,15

	Don't Panic! (Who Should Read This Document?)
	Introduction to LAM/MPI
	About MPI
	About LAM/MPI

	Release Notes
	New Feature Overview
	Platform-Specific Notes
	Provided RPMs
	Filesystem Issues
	Dynamic/Embedded Environments
	Linux
	Microsoft Windows(TM)(Cygwin)
	Solaris

	Getting Started with LAM/MPI
	One-Time Setup
	Setting the Path
	Finding the LAM Manual Pages

	System Services Interface (SSI)
	What Does Your LAM/MPI Installation Support?
	Booting the LAM Run-Time Environment
	The Boot Schema File (a.k.a, ``Hostfile'', ``Machinefile'')
	The lamboot Command
	The lamnodes Command

	Compiling MPI Programs
	Sample MPI Program in C
	Sample MPI Program in C++
	Sample MPI Program in Fortran

	Running MPI Programs
	The mpirun Command
	The mpiexec Command
	The mpitask Command
	The lamclean Command

	Shutting Down the LAM Universe

	Supported MPI Functionality
	MPI-1 Support
	Language Bindings
	MPI_CANCEL

	MPI-2 Support
	Miscellany
	Process Creation and Management
	One-Sided Communication
	Extended Collective Operations
	External Interfaces
	I/O
	Language Bindings

	System Services Interface (SSI) Overview
	Types and Modules
	Terminology
	SSI Parameters
	Naming Conventions
	Setting Parameter Values

	Selecting Modules
	Specifying Modules
	Setting Priorities
	Selection Algorithm

	LAM/MPI Command Quick Reference
	The lamboot Command
	Multiple Sessions on the Same Node
	Avoiding Running on Specific Nodes

	The lamclean Command
	The lamexec Command
	The lamgrow Command
	The lamhalt Command
	The laminfo Command
	The lamnodes Command
	The lamshrink Command
	The mpicc, mpiCC / mpic++, and mpif77 Commands
	Deprecated Names

	The mpiexec Command
	General Syntax
	Launching MPMD Processes
	Launching MPI Processes with No Established LAM Universe

	The mpimsg Command (Deprecated)
	The mpirun Command
	Simple Examples
	Controlling Where Processes Are Launched
	Per-Process Controls
	Ability to Pass Environment Variables
	Current Working Directory Behavior

	The mpitask Command
	The recon Command
	The tping Command
	The wipe Command

	Available LAM Modules
	Booting the LAM Run-Time Environment
	Boot Schema Files (a.k.a., ``Hostfiles'' or ``Machinefiles'')
	Minimum Requirements
	Selecting a boot Module
	boot SSI Parameters
	The bproc Module
	The globus Module
	The rsh Module (including ssh)
	The tm Module (OpenPBS / PBS Pro)

	Available MPI Modules
	MPI Module Selection Process
	MPI Point-to-point Communication (Request Progression Interface / RPI)
	Two Different Shared Memory RPI Modules
	The crtcp Module (Checkpoint-able TCP Communication)
	The gm Module (Myrinet)
	The lamd Module (Daemon-Based Communication)
	The sysv Module (Shared Memory Using System V Semaphores)
	The tcp Module (TCP Communication)
	The usysv Module (Shared Memory Using Spin Locks)

	MPI Collective Communication
	Selecting a coll Module
	coll SSI Parameters
	The lam_basic Module
	The smp Module

	Checkpoint/Restart of MPI Jobs
	Selecting a cr Module
	cr SSI Parameters
	The blcr Module

	Debugging Parallel Programs
	Naming MPI Objects
	TotalView Parallel Debugger
	Attaching TotalView to MPI Processes
	Suggested Use
	Limitations
	Message Queue Debugging

	Serial Debuggers
	Lauching Debuggers
	Attaching Debuggers

	Memory-Checking Debuggers

	Troubleshooting
	The LAM/MPI Mailing Lists
	Announcements
	General Discussion / User Questions

	LAM Run-Time Environment Problems
	Problems with the lamboot Command

	MPI Problems

	Miscellaneous
	Singleton MPI Processes
	MPI-2 I/O Support
	Fortran Process Names
	MPI Thread Support
	Thread Level

	MPI-2 Name Publishing
	Interoperable MPI (IMPI) Support
	Purpose of IMPI
	Current IMPI functionality
	Running an IMPI Job

	Batch Queueing System Support
	Location of LAM's Session Directory
	Signal Catching

